operator — Standard operators as functions - Python 3.12.0a3 documentation 编辑
Source code: Lib/operator.py
The operator
module exports a set of efficient functions corresponding to the intrinsic operators of Python. For example, operator.add(x, y)
is equivalent to the expression x+y
. Many function names are those used for special methods, without the double underscores. For backward compatibility, many of these have a variant with the double underscores kept. The variants without the double underscores are preferred for clarity.
The functions fall into categories that perform object comparisons, logical operations, mathematical operations and sequence operations.
The object comparison functions are useful for all objects, and are named after the rich comparison operators they support:
- operator.lt(a, b)
- operator.le(a, b)
- operator.eq(a, b)
- operator.ne(a, b)
- operator.ge(a, b)
- operator.gt(a, b)
- operator.__lt__(a, b)
- operator.__le__(a, b)
- operator.__eq__(a, b)
- operator.__ne__(a, b)
- operator.__ge__(a, b)
- operator.__gt__(a, b)
Perform “rich comparisons” between a and b. Specifically,
lt(a, b)
is equivalent toa < b
,le(a, b)
is equivalent toa <= b
,eq(a, b)
is equivalent toa == b
,ne(a, b)
is equivalent toa != b
,gt(a, b)
is equivalent toa > b
andge(a, b)
is equivalent toa >= b
. Note that these functions can return any value, which may or may not be interpretable as a Boolean value. See Comparisons for more information about rich comparisons.
The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean operations:
- operator.not_(obj)
- operator.__not__(obj)
Return the outcome of
not
obj. (Note that there is no__not__()
method for object instances; only the interpreter core defines this operation. The result is affected by the__bool__()
and__len__()
methods.)
- operator.truth(obj)
Return
True
if obj is true, andFalse
otherwise. This is equivalent to using thebool
constructor.
- operator.is_(a, b)
Return
a is b
. Tests object identity.
- operator.is_not(a, b)
Return
a is not b
. Tests object identity.
The mathematical and bitwise operations are the most numerous:
- operator.abs(obj)
- operator.__abs__(obj)
Return the absolute value of obj.
- operator.add(a, b)
- operator.__add__(a, b)
Return
a + b
, for a and b numbers.
- operator.and_(a, b)
- operator.__and__(a, b)
Return the bitwise and of a and b.
- operator.floordiv(a, b)
- operator.__floordiv__(a, b)
Return
a // b
.
- operator.index(a)
- operator.__index__(a)
Return a converted to an integer. Equivalent to
a.__index__()
.Changed in version 3.10: The result always has exact type
int
. Previously, the result could have been an instance of a subclass ofint
.
- operator.inv(obj)
- operator.invert(obj)
- operator.__inv__(obj)
- operator.__invert__(obj)
Return the bitwise inverse of the number obj. This is equivalent to
~obj
.
- operator.lshift(a, b)
- operator.__lshift__(a, b)
Return a shifted left by b.
- operator.mod(a, b)
- operator.__mod__(a, b)
Return
a % b
.
- operator.mul(a, b)
- operator.__mul__(a, b)
Return
a * b
, for a and b numbers.
- operator.matmul(a, b)
- operator.__matmul__(a, b)
Return
a @ b
.New in version 3.5.
- operator.neg(obj)
- operator.__neg__(obj)
Return obj negated (
-obj
).
- operator.or_(a, b)
- operator.__or__(a, b)
Return the bitwise or of a and b.
- operator.pos(obj)
- operator.__pos__(obj)
Return obj positive (
+obj
).
- operator.pow(a, b)
- operator.__pow__(a, b)
Return
a ** b
, for a and b numbers.
- operator.rshift(a, b)
- operator.__rshift__(a, b)
Return a shifted right by b.
- operator.sub(a, b)
- operator.__sub__(a, b)
Return
a - b
.
- operator.truediv(a, b)
- operator.__truediv__(a, b)
Return
a / b
where 2/3 is .66 rather than 0. This is also known as “true” division.
- operator.xor(a, b)
- operator.__xor__(a, b)
Return the bitwise exclusive or of a and b.
Operations which work with sequences (some of them with mappings too) include:
- operator.concat(a, b)
- operator.__concat__(a, b)
Return
a + b
for a and b sequences.
- operator.contains(a, b)
- operator.__contains__(a, b)
Return the outcome of the test
b in a
. Note the reversed operands.
- operator.countOf(a, b)
Return the number of occurrences of b in a.
- operator.delitem(a, b)
- operator.__delitem__(a, b)
Remove the value of a at index b.
- operator.getitem(a, b)
- operator.__getitem__(a, b)
Return the value of a at index b.
- operator.indexOf(a, b)
Return the index of the first of occurrence of b in a.
- operator.setitem(a, b, c)
- operator.__setitem__(a, b, c)
Set the value of a at index b to c.
- operator.length_hint(obj, default=0)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
object.__length_hint__()
, and finally return the default value.New in version 3.4.
The following operation works with callables:
- operator.call(obj, /, *args, **kwargs)
- operator.__call__(obj, /, *args, **kwargs)
Return
obj(*args, **kwargs)
.New in version 3.11.
The operator
module also defines tools for generalized attribute and item lookups. These are useful for making fast field extractors as arguments for map()
, sorted()
, itertools.groupby()
, or other functions that expect a function argument.
- operator.attrgetter(attr)
- operator.attrgetter(*attrs)
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns a tuple of attributes. The attribute names can also contain dots. For example:
After
f = attrgetter('name')
, the callf(b)
returnsb.name
.After
f = attrgetter('name', 'date')
, the callf(b)
returns(b.name, b.date)
.After
f = attrgetter('name.first', 'name.last')
, the callf(b)
returns(b.name.first, b.name.last)
.
Equivalent to:
def attrgetter(*items): if any(not isinstance(item, str) for item in items): raise TypeError('attribute name must be a string') if len(items) == 1: attr = items[0] def g(obj): return resolve_attr(obj, attr) else: def g(obj): return tuple(resolve_attr(obj, attr) for attr in items) return g def resolve_attr(obj, attr): for name in attr.split("."): obj = getattr(obj, name) return obj
- operator.itemgetter(item)
- operator.itemgetter(*items)
Return a callable object that fetches item from its operand using the operand’s
__getitem__()
method. If multiple items are specified, returns a tuple of lookup values. For example:After
f = itemgetter(2)
, the callf(r)
returnsr[2]
.After
g = itemgetter(2, 5, 3)
, the callg(r)
returns(r[2], r[5], r[3])
.
Equivalent to:
def itemgetter(*items): if len(items) == 1: item = items[0] def g(obj): return obj[item] else: def g(obj): return tuple(obj[item] for item in items) return g
The items can be any type accepted by the operand’s
__getitem__()
method. Dictionaries accept any hashable value. Lists, tuples, and strings accept an index or a slice:>>> itemgetter(1)('ABCDEFG') 'B' >>> itemgetter(1, 3, 5)('ABCDEFG') ('B', 'D', 'F') >>> itemgetter(slice(2, None))('ABCDEFG') 'CDEFG' >>> soldier = dict(rank='captain', name='dotterbart') >>> itemgetter('rank')(soldier) 'captain'
Example of using
itemgetter()
to retrieve specific fields from a tuple record:>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)] >>> getcount = itemgetter(1) >>> list(map(getcount, inventory)) [3, 2, 5, 1] >>> sorted(inventory, key=getcount) [('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
- operator.methodcaller(name, /, *args, **kwargs)
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword arguments are given, they will be given to the method as well. For example:
After
f = methodcaller('name')
, the callf(b)
returnsb.name()
.After
f = methodcaller('name', 'foo', bar=1)
, the callf(b)
returnsb.name('foo', bar=1)
.
Equivalent to:
def methodcaller(name, /, *args, **kwargs): def caller(obj): return getattr(obj, name)(*args, **kwargs) return caller
Mapping Operators to Functions
This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the operator
module.
Operation | Syntax | Function |
---|---|---|
Addition |
|
|
Concatenation |
|
|
Containment Test |
|
|
Division |
|
|
Division |
|
|
Bitwise And |
|
|
Bitwise Exclusive Or |
|
|
Bitwise Inversion |
|
|
Bitwise Or |
|
|
Exponentiation |
|
|
Identity |
|
|
Identity |
|
|
Indexed Assignment |
|
|
Indexed Deletion |
|
|
Indexing |
|
|
Left Shift |
|
|
Modulo |
|
|
Multiplication |
|
|
Matrix Multiplication |
|
|
Negation (Arithmetic) |
|
|
Negation (Logical) |
|
|
Positive |
|
|
Right Shift |
|
|
Slice Assignment |
|
|
Slice Deletion |
|
|
Slicing |
|
|
String Formatting |
|
|
Subtraction |
|
|
Truth Test |
|
|
Ordering |
|
|
Ordering |
|
|
Equality |
|
|
Difference |
|
|
Ordering |
|
|
Ordering |
|
|
In-place Operators
Many operations have an “in-place” version. Listed below are functions providing a more primitive access to in-place operators than the usual syntax does; for example, the statement x += y
is equivalent to x = operator.iadd(x, y)
. Another way to put it is to say that z = operator.iadd(x, y)
is equivalent to the compound statement z = x; z += y
.
In those examples, note that when an in-place method is called, the computation and assignment are performed in two separate steps. The in-place functions listed below only do the first step, calling the in-place method. The second step, assignment, is not handled.
For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back to the input variable:
>>> a = 'hello' >>> iadd(a, ' world') 'hello world' >>> a 'hello'
For mutable targets such as lists and dictionaries, the in-place method will perform the update, so no subsequent assignment is necessary:
>>> s = ['h', 'e', 'l', 'l', 'o'] >>> iadd(s, [' ', 'w', 'o', 'r', 'l', 'd']) ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd'] >>> s ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
- operator.iadd(a, b)
- operator.__iadd__(a, b)
a = iadd(a, b)
is equivalent toa += b
.
- operator.iand(a, b)
- operator.__iand__(a, b)
a = iand(a, b)
is equivalent toa &= b
.
- operator.iconcat(a, b)
- operator.__iconcat__(a, b)
a = iconcat(a, b)
is equivalent toa += b
for a and b sequences.
- operator.ifloordiv(a, b)
- operator.__ifloordiv__(a, b)
a = ifloordiv(a, b)
is equivalent toa //= b
.
- operator.ilshift(a, b)
- operator.__ilshift__(a, b)
a = ilshift(a, b)
is equivalent toa <<= b
.
- operator.imod(a, b)
- operator.__imod__(a, b)
a = imod(a, b)
is equivalent toa %= b
.
- operator.imul(a, b)
- operator.__imul__(a, b)
a = imul(a, b)
is equivalent toa *= b
.
- operator.imatmul(a, b)
- operator.__imatmul__(a, b)
a = imatmul(a, b)
is equivalent toa @= b
.New in version 3.5.
- operator.ior(a, b)
- operator.__ior__(a, b)
a = ior(a, b)
is equivalent toa |= b
.
- operator.ipow(a, b)
- operator.__ipow__(a, b)
a = ipow(a, b)
is equivalent toa **= b
.
- operator.irshift(a, b)
- operator.__irshift__(a, b)
a = irshift(a, b)
is equivalent toa >>= b
.
- operator.isub(a, b)
- operator.__isub__(a, b)
a = isub(a, b)
is equivalent toa -= b
.
- operator.itruediv(a, b)
- operator.__itruediv__(a, b)
a = itruediv(a, b)
is equivalent toa /= b
.
- operator.ixor(a, b)
- operator.__ixor__(a, b)
a = ixor(a, b)
is equivalent toa ^= b
.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论