numbers — Numeric abstract base classes - Python 3.10.9 documentation 编辑

Source code: Lib/numbers.py


The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define more operations. None of the types defined in this module are intended to be instantiated.

class numbers.Number

The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number).

The numeric tower

class numbers.Complex

Subclasses of this type describe complex numbers and include the operations that work on the built-in complex type. These are: conversions to complex and bool, real, imag, +, -, *, /, **, abs(), conjugate(), ==, and !=. All except - and != are abstract.

real

Abstract. Retrieves the real component of this number.

imag

Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate()

Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j).

class numbers.Real

To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc(), round(), math.floor(), math.ceil(), divmod(), //, %, <, <=, >, and >=.

Real also provides defaults for complex(), real, imag, and conjugate().

class numbers.Rational

Subtypes Real and adds numerator and denominator properties. It also provides a default for float().

The numerator and denominator values should be instances of Integral and should be in lowest terms with denominator positive.

numerator

Abstract.

denominator

Abstract.

class numbers.Integral

Subtypes Rational and adds a conversion to int. Provides defaults for float(), numerator, and denominator. Adds abstract methods for pow() with modulus and bit-string operations: <<, >>, &, ^, |, ~.

Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction implements hash() as follows:

def __hash__(self):
    if self.denominator == 1:
        # Get integers right.
        return hash(self.numerator)
    # Expensive check, but definitely correct.
    if self == float(self):
        return hash(float(self))
    else:
        # Use tuple's hash to avoid a high collision rate on
        # simple fractions.
        return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo(Complex): ...
MyFoo.register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. For subtypes of Integral, this means that __add__() and __radd__() should be defined as:

class MyIntegral(Integral):

    def __add__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(self, other)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(self, other)
        else:
            return NotImplemented

    def __radd__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(other, self)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(other, self)
        elif isinstance(other, Integral):
            return int(other) + int(self)
        elif isinstance(other, Real):
            return float(other) + float(self)
        elif isinstance(other, Complex):
            return complex(other) + complex(self)
        else:
            return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I’ll refer to all of the above code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A, which is a subtype of Complex (a : A <: Complex), and b : B <: Complex. I’ll consider a + b:

  1. If A defines an __add__() which accepts b, all is well.

  2. If A falls back to the boilerplate code, and it were to return a value from __add__(), we’d miss the possibility that B defines a more intelligent __radd__(), so the boilerplate should return NotImplemented from __add__(). (Or A may not implement __add__() at all.)

  3. Then B’s __radd__() gets a chance. If it accepts a, all is well.

  4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default implementation should live.

  5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented with knowledge of A, so it can handle those instances before delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared operation is the one involving the built in complex, and both __radd__() s land there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
    def forward(a, b):
        if isinstance(b, (int, Fraction)):
            return monomorphic_operator(a, b)
        elif isinstance(b, float):
            return fallback_operator(float(a), b)
        elif isinstance(b, complex):
            return fallback_operator(complex(a), b)
        else:
            return NotImplemented
    forward.__name__ = '__' + fallback_operator.__name__ + '__'
    forward.__doc__ = monomorphic_operator.__doc__

    def reverse(b, a):
        if isinstance(a, Rational):
            # Includes ints.
            return monomorphic_operator(a, b)
        elif isinstance(a, numbers.Real):
            return fallback_operator(float(a), float(b))
        elif isinstance(a, numbers.Complex):
            return fallback_operator(complex(a), complex(b))
        else:
            return NotImplemented
    reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
    reverse.__doc__ = monomorphic_operator.__doc__

    return forward, reverse

def _add(a, b):
    """a + b"""
    return Fraction(a.numerator * b.denominator +
                    b.numerator * a.denominator,
                    a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

# ...

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

词条统计

浏览:13 次

字数:10366

最后编辑:6年前

编辑次数:0 次

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文