fractions — Rational numbers - Python 3.10.9 documentation 编辑

Source code: Lib/fractions.py


The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other_fraction)
class fractions.Fraction(float)
class fractions.Fraction(decimal)
class fractions.Fraction(string)

The first version requires that numerator and denominator are instances of numbers.Rational and returns a new Fraction instance with value numerator/denominator. If denominator is 0, it raises a ZeroDivisionError. The second version requires that other_fraction is an instance of numbers.Rational and returns a Fraction instance with the same value. The next two versions accept either a float or a decimal.Decimal instance, and return a Fraction instance with exactly the same value. Note that due to the usual issues with binary floating-point (see Floating Point Arithmetic: Issues and Limitations), the argument to Fraction(1.1) is not exactly equal to 11/10, and so Fraction(1.1) does not return Fraction(11, 10) as one might expect. (But see the documentation for the limit_denominator() method below.) The last version of the constructor expects a string or unicode instance. The usual form for this instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+’ or ‘-’ and numerator and denominator (if present) are strings of decimal digits. In addition, any string that represents a finite value and is accepted by the float constructor is also accepted by the Fraction constructor. In either form the input string may also have leading and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
>>> Fraction('7e-6')
Fraction(7, 1000000)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1'))
Fraction(11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the methods and operations from that class. Fraction instances are hashable, and should be treated as immutable. In addition, Fraction has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal instances.

Changed in version 3.9: The math.gcd() function is now used to normalize the numerator and denominator. math.gcd() always return a int type. Previously, the GCD type depended on numerator and denominator.

numerator

Numerator of the Fraction in lowest term.

denominator

Denominator of the Fraction in lowest term.

as_integer_ratio()

Return a tuple of two integers, whose ratio is equal to the Fraction and with a positive denominator.

New in version 3.8.

classmethod from_float(flt)

Alternative constructor which only accepts instances of float or numbers.Integral. Beware that Fraction.from_float(0.3) is not the same value as Fraction(3, 10).

Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a float.

classmethod from_decimal(dec)

Alternative constructor which only accepts instances of decimal.Decimal or numbers.Integral.

Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a decimal.Decimal instance.

limit_denominator(max_denominator=1000000)

Finds and returns the closest Fraction to self that has denominator at most max_denominator. This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos
>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator()
Fraction(1, 2)
>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)
__floor__()

Returns the greatest int <= self. This method can also be accessed through the math.floor() function:

>>> from math import floor
>>> floor(Fraction(355, 113))
3
__ceil__()

Returns the least int >= self. This method can also be accessed through the math.ceil() function.

__round__()
__round__(ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds self to the nearest multiple of Fraction(1, 10**ndigits) (logically, if ndigits is negative), again rounding half toward even. This method can also be accessed through the round() function.

See also

Module numbers

The abstract base classes making up the numeric tower.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

词条统计

浏览:58 次

字数:8696

最后编辑:7年前

编辑次数:0 次

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文