polynomial-math

polynomial-math

文章 0 浏览 2

将多项式模型拟合到 R 中的数据

我已阅读此问题的答案,它们非常有帮助,但我需要帮助。 我在 R 中有一个示例数据集,如下所示: x <- c(32,64,96,118,126,144,152.5,158) y <- c(99.…

凶凌 2024-09-25 09:19:27 7 0

使用霍纳算法进行高效多项式评估

我有方程 y = 3(x+1)^2 + 5(x+1)^4。 使用 Horner 的方案,我可以以这种形式计算该多项式 y = 8+x(26+x(33+x(20+5x))),因此需要 8 次算术运算。 我也…

向地狱狂奔 2024-09-19 06:33:07 13 0

如何实现多元多项式的霍纳方案?

背景 我需要在 Fortran90/95 中使用 Horner 方案 求解多个变量中的多项式。这样做的主要原因是使用霍纳方案评估多项式时可以提高效率和准确性。 我目…

迟月 2024-09-06 10:28:28 7 0

四次函数的根

我在进行一些高级碰撞检测时遇到了一种情况,需要计算四次函数的根。 我使用法拉利的通用解决方案编写了一个似乎工作正常的函数,如下所示: http:// …

|煩躁 2024-09-04 10:06:38 6 0

NTRUEncrypt 中多项式的模约化

我正在实现 NTRUEncrypt 算法,根据 NTRU 教程,多项式 f 具有逆 g,使得 f*g=1 mod x,基本上多项式乘以其逆约简模 x 得到 1。我明白了这个概念,但…

避讳 2024-08-30 02:57:32 7 0

多项式曲面拟合 numpy

如何将 2D 曲面 z=f(x,y) 与具有完整交叉项的 numpy 多项式拟合?…

我ぃ本無心為│何有愛 2024-08-26 22:08:06 8 0

使用链表读取基本多项式

好吧,在未能阅读多项式之后,我首先尝试一种基本方法。 所以我有带有 read 和 print 函数的 polinom 类: #ifndef _polinom_h #define _polinom_h #i…

兮颜 2024-08-25 08:13:24 10 0

用于计算多项式逆的 NTRU 伪代码

我想知道是否有人可以告诉我如何实现以下伪代码的第 45 行。 Require: the polynomial to invert a(x), N, and q. 1: k = 0 2: b = 1 3: c = 0 4: f =…

别把无礼当个性 2024-08-25 06:07:54 11 0

使用运算符重载的多项式运算

我试图使用运算符重载来定义多项式类的基本运算(+、-、*、/),但是当我运行程序时,它崩溃了,我的计算机冻结了。 更新4 好的。我成功地进行了三个…

两相知 2024-08-25 03:35:00 10 0

多项式计算器

我正在做一个多项式计算器,随着代码的进展,我需要一些帮助。 现在我只制作了 polinom 类,我将其表示为带有术语和一些函数的链接列表(现在仅读取和…

野侃 2024-08-24 16:21:19 18 0

计算多项式倒数的算法

我正在寻找一种算法(或代码)来帮助我计算多项式的逆,我需要它来实现 NTRUEncrypt。我更喜欢易于理解的算法,有伪代码可以做到这一点,但它们很混乱…

画骨成沙 2024-08-24 06:38:13 11 0

从伪代码实现递归 (NTRUEncrypt)

作为我最后一年大学项目的一部分,我需要实施 NTRU 公钥密码系统。我正在尝试实现一种通过递归将长多项式相乘的算法,但是我在尝试理解伪代码时陷入了…

最美不过初阳 2024-08-24 02:36:35 11 0

C++多项式乘法的重载 *

所以我一直在开发一个多项式类,其中用户输入: 1x^0 + 2x^1 + 3x^2... 和 1,2,3 (系数)存储在 int 数组中 我的重载 + 和 - 函数可以工作但是,* 不…

心是晴朗的。 2024-08-12 18:19:08 9 0

自定义对象中的方法应该具有破坏性吗?

我必须实现 Java.Polynomial 作为学校作业。 部分方法有 add(polynomial)、multiply(polynomial) 等。 在类似的情况下 p.add(q); // computes p + q …

星星的轨迹 2024-07-14 23:05:17 14 0

将二次曲线点转换为多项式表示?

我有二次贝塞尔曲线的 2 个端点和 1 个贝塞尔点的 X、Y。 使用这些数据,我如何导出曲线的多项式表示? (来源:euclidraw.com)…

往昔成烟 2024-07-14 04:07:21 10 0
更多

推荐作者

苦中寻乐

文章 0 评论 0

lueluelue

文章 0 评论 0

嗼ふ静

文章 0 评论 0

王权女流氓

文章 0 评论 0

与花如笺

文章 0 评论 0

残酷

文章 0 评论 0

更多

友情链接

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文