UserWarning: findfont: Font family ['sans-serif'] not found.错误?

发布于 2022-09-12 23:22:42 字数 10481 浏览 28 评论 0

题目描述

这个怎么弄?按照网上改了改一个mat里面的文本,还是在报错

题目来源及自己的思路

ID3决策树

相关代码

import numpy as np
import pandas as pd
from utils.plotDecisionTree import *
from sklearn.metrics import accuracy_score
import time

#计算经验熵
def calcEntropy(dataSet):
    mD = len(dataSet)                               # mD表示数据集的数据向量个数
    dataLabelList = [x[-1] for x in dataSet]        # 数据集最后一列 标签
    dataLabelSet = set(dataLabelList)               # 转化为标签集合,集合不重复,所以转化
    ent = 0
    for label in dataLabelSet:                      # 对于集合中的每一个标签
        mDv = dataLabelList.count(label)            # 统计它出现的次数
        prop = float(mDv) / mD                      # 计算频率
        ent = ent - prop * np.math.log(prop, 2)     # 计算条件熵,见算法预备知识
    return ent

#计算条件熵
def calcCondEntropy(dataSet,featureSet,i):
    mD = len(dataSet)  
    ent=0
    for feature in featureSet:
        # 拆分数据集,去除第i行数据特征
        splitedDataSet = splitDataSet(dataSet, i, feature)  
        mDv = len(splitedDataSet)
        # 计算条件熵
        ent = ent + float(mDv) / mD * calcEntropy(splitedDataSet)
    return ent


# 拆分数据集
# index   要拆分的特征的下标
# feature 要拆分的特征
# 返回值   dataSet中index所在特征为feature,且去掉index一列的集合
def splitDataSet(dataSet, index, feature):
    splitedDataSet = []
    mD = len(dataSet)
    for data in dataSet:
        if(data[index] == feature):                 # 将数据集拆分
            sliceTmp = data[:index]                 # 取[0,index)
            sliceTmp.extend(data[index + 1:])       # 扩展(index,len]
            splitedDataSet.append(sliceTmp)
    return splitedDataSet


# 根据信息增益 - 选择最好的特征
# 返回值 - 最好的特征的下标
def chooseBestFeature(dataSet):                     
    entD = calcEntropy(dataSet)                     # 计算经验熵
    mD = len(dataSet)               
    featureNumber = len(dataSet[0]) - 1
    maxGain = -100                                  # 最大增益
    maxIndex = -1                                   # 最大增益的下标
    Gain=0
    for i in range(featureNumber):                      
        featureI = [x[i] for x in dataSet]          # 数据集合中的第i列特征
        featureSet = set(featureI)                  # 特征集合
        Gain = entD - calcCondEntropy(dataSet,featureSet,i) # 计算信息增益
        if(maxIndex == -1):
            maxGain = Gain
            maxIndex = i
        elif(maxGain < Gain):                       # 记录最大的信息增益和下标
            maxGain = Gain
            maxIndex = i
    return maxIndex                                 # 返回下标    


# 寻找最多的,作为标签
def mainLabel(labelList):
    labelRec = labelList[0]
    maxLabelCount = -1
    labelSet = set(labelList)
    for label in labelSet:
        if(labelList.count(label) > maxLabelCount):
            maxLabelCount = labelList.count(label)
            labelRec = label
    return labelRec

# 生成决策树,注意,是列表的形式存储
# dataSet:数据集, featureNames:数据属性类别, featureNamesSet:属性类别集合, labelListParent:父节点标签列表
def createFullDecisionTree(dataSet, featureNames, featureNamesSet, labelListParent):
    labelList = [x[-1] for x in dataSet]
    if(len(dataSet) == 0):                                  # 如果数据集为空,返回父节点标签列表的主要标签
        return mainLabel(labelListParent)
    elif(len(dataSet[0]) == 1):                             # 没有可划分的属性,选出最多的label作为该数据集的标签
        return mainLabel(labelList)                         
    elif(labelList.count(labelList[0]) == len(labelList)):  # 全部都属于同一个Label,返回labList[0]
        return labelList[0]

    # 不满足上面的边界情况则需要创建新的分支节点
    bestFeatureIndex = chooseBestFeature(dataSet)           # 根据信息增益,选择数据集中最好的特征下标
    bestFeatureName = featureNames.pop(bestFeatureIndex)    # 取出属性类别
    myTree = {bestFeatureName: {}}                          # 新建节点,一个字典
    featureList = featureNamesSet.pop(bestFeatureIndex)     # 取出最佳属性的类别
    featureSet = set(featureList)                           # 剔除属性类别集合
    for feature in featureSet:                              # 遍历最佳属性所有取值
        featureNamesNext = featureNames[:]                  
        featureNamesSetNext = featureNamesSet[:][:]
        splitedDataSet = splitDataSet(dataSet, bestFeatureIndex, feature)   # 剔除最佳特征
        # 递归地生成新的节点
        # featureNames:数据属性类别, featureNamesSet:属性类别集合, labelListParent:父节点标签列表
        # 一个二叉树
        myTree[bestFeatureName][feature] = createFullDecisionTree(splitedDataSet, featureNamesNext, featureNamesSetNext, labelList)
    return myTree


# 读取数据集
def readDataSet(path):
    ifile = open(path, encoding='utf-8_sig', errors='ignore')
    #表头
    featureName = ifile.readline()              
    featureName = featureName.rstrip("\n")
    #类别,属性
    featureNames = (featureName.split(' ')[0]).split(',')
    #读取文件
    lines = ifile.readlines()
    #数据集
    dataSet = []
    for line in lines:
        tmp = line.split('\n')[0]
        tmp = tmp.split(',')
        dataSet.append(tmp)
    #获取标签
    labelList = [x[-1] for x in dataSet]
    #获取featureNamesSet
    featureNamesSet = []
    for i in range(len(dataSet[0]) - 1):
        col = [x[i] for x in dataSet]
        colSet = set(col)
        featureNamesSet.append(list(colSet))
    #返回 数据集,属性名,所有属性的取值集合,以及标签列表
    return dataSet, featureNames, featureNamesSet,labelList

def tree_predict(tree, data):
  #print(data)
  feature = list(tree.keys())[0]    #取树第一个结点的键(特征)
  #print(feature)
  label = data[feature]             #该特征下的属性
  next_tree = tree[feature][label]  #取下一个结点树
  if type(next_tree) == str:        #如果是个字符串,说明已经到达叶节点返回分类结果
    return next_tree
  else:                             # 否则继续如上处理
    return tree_predict(next_tree, data)

def main():
    #获取训练集,所有属性名称,每个属性的类别,所有标签(最后一列)    
    dataTrain, featureNames, featureNamesSet,labelList = readDataSet("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")
    print("dataTrain: \n",dataTrain,"featureNames:\n",featureNames,"featureNamesSet:\n",featureNamesSet,"labelList:\n",labelList)

    #获取测试集
    train= pd.read_csv("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")
    test = pd.read_csv("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")
    print("train:\n",train[:10])
    print("test:\n",test[:10])

    #生成决策树
    t0 = time.time()
    tree=createFullDecisionTree(dataTrain, featureNames,featureNamesSet,labelList)
    t1 = time.time()
    print("ID3算法生成决策树的时间开销:",(t1 - t0)*(10**6),"us")
    createPlot(tree,r"D:\MachineLearning-master\lab4\fig\ID3.png")

    predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)
    label_list = train.iloc[:, -1]
    score = accuracy_score(label_list, predictTrain)
    print('训练补全分支准确率为:' + repr(score * 100) + '%')

    #预测
    y_predict = test.apply(lambda x: tree_predict(tree, x), axis=1)
    label_list = test.iloc[:, -1]
    score = accuracy_score(label_list, y_predict)
    print('测试集补全分支准确率为:' + repr(score * 100) + '%')

if __name__ == "__main__":
    main()

你期待的结果是什么?实际看到的错误信息又是什么?

C:\Users\Faker\Anaconda3\python.exe C:/Users/Faker/PycharmProjects/pythonProject/main.py
dataTrain: 
 [['bad', 'true', 'true', 'high'], ['bad', 'true', 'true', 'high'], ['bad', 'false', 'true', 'high'], ['bad', 'true', 'true', 'high'], ['bad', 'false', 'true', 'high'], ['bad', 'true', 'false', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'false', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['bad', 'true', 'true', 'low'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'false', 'high'], ['bad', 'false', 'false', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'false', 'low'], ['bad', 'true', 'false', 'low'], ['good', 'false', 'true', 'low'], ['good', 'false', 'true', 'low'], ['bad', 'false', 'false', 'low'], ['bad', 'false', 'false', 'low'], ['good', 'false', 'false', 'low'], ['bad', 'true', 'false', 'low'], ['good', 'false', 'true', 'low'], ['good', 'false', 'false', 'low'], ['good', 'false', 'false', 'low']] featureNames:
 ['bad', 'true', 'true', 'high'] featureNamesSet:
 [['bad', 'good'], ['true', 'false'], ['true', 'false']] labelList:
 ['high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'low', 'high', 'high', 'high', 'high', 'high', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low']
train:
     bad   true  true.1  high
0   bad   True    True  high
1   bad   True    True  high
2   bad  False    True  high
3   bad   True    True  high
4   bad  False    True  high
5   bad   True   False  high
6  good   True    True  high
7  good   True   False  high
8  good   True    True  high
9  good   True    True  high
test:
     bad   true  true.1  high
0   bad   True    True  high
1   bad   True    True  high
2   bad  False    True  high
3   bad   True    True  high
4   bad  False    True  high
5   bad   True   False  high
6  good   True    True  high
7  good   True   False  high
8  good   True    True  high
9  good   True    True  high
ID3算法生成决策树的时间开销: 0.0 us
C:\Users\Faker\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1331: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))
Traceback (most recent call last):
  File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 176, in <module>
    main()
  File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 164, in main
    predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)
  File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\frame.py", line 6014, in apply
    return op.get_result()
  File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 142, in get_result
    return self.apply_standard()
  File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 248, in apply_standard
    self.apply_series_generator()
  File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 277, in apply_series_generator
    results[i] = self.f(v)
  File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 164, in <lambda>
    predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)
  File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 140, in tree_predict
    next_tree = tree[feature][label]  #取下一个结点树
KeyError: (True, 'occurred at index 0')

Process finished with exit code 1

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

作业与我同在 2022-09-19 23:22:42

看你标题是找不到字体的错误,请下载该字体并解决。

看你代码是键错误,可以尝试使用静态的键来调试错误,或进入debug查看当时的键值表。

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文