样本标签极不均衡,这种训练方式可行吗?
用多任务学习进行分类,比如任务A是分类3种风格,如阳光、低调、"其他风格",任务B是分类3种款式,如牛仔裤、西裤、"其他款式"。
任一样本被标记了风格和款式两个标签,但是95%的样本标签都是 任一风格+其他裤子 或者 任一裤子+其他风格 这样的。讲得可能不是很清楚,下图帮助理解:
这样数据集中阳光和低调、牛仔裤和西裤之间数量差不多,但是"其他款式"和"其他风格"占比非常大。
由于这是多任务学习网络,可不可一次只训练一个分支,即把另一个分支每个神经元的权重调成0,或者把另一个分支冻结,来进行训练?
或者还有没有其他更好的办法?
补充:
- 上面提到的数据集是个假想的例子,实际数据集中的标签要多得多。
- 我有考虑过数据增强和调样本权重。
一开始我用了数据集中较少标签(只有款式和面料),训练出来的模型的F1值大小排序约为:数据增强>样本调权>数据增强+样本调权。
然后我打算使用更多标签(款式、面料、贴图、风格),并只用了数据增强,最后模型把他们全部都预测为了其他分类。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论