几千万个文本(1TB左右)需要根据规则计算做结构化,用什么大数据架构比较合适?
目前有几千万个文本(1TB左右)的数据存储在sqlserver中。
需求是需要根据业务上的规则(位置,前后关键字,语法匹配等方式)对文本进行分析计算,将文本中的信息提取出来,生成结构化数据。
另外数据也是不断的在增长,每天增量在10~100万。
问题:
- 规则需要不断调整迭代,文本分析要反复进行,所以希望每次处理的时间尽量快一些,因此想采用分布式计算的方案。但具体使用什么架构比较好?hadoop,spark,storm等等,该如何选型,更适合当前的业务场景?
- 数据是否要从sqlserver导入到hadoop平台?用什么方案存储比较好?
- 生成的结构化数据是否可以写回到sqlserver中,前端程序改动较小,但不知道这样的话sqlserver是否会成为瓶颈?有没有什么解决方案?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)