聚类算法在实际项目中都应用在哪些方面?
能想到的场景或接触到的场景如下。
用户分类运营。一般情况下,运营给的分类标准比较多,比如RFM模型中就有三个变量,如果穷举所有变量为0,1也有8种。在一些线下或者个性化要求不高的场景中,聚类就是一个很好的策略,可以根据运营能接受的运营数目,给定聚类数来使用聚类。完成后为每个结果标注变量的大小,告诉运营每个类别的属性,然后分别制定不同的运营策略。
异常检测。这个往往在数据清洗中,可以排除掉一些典型有问题的数据;另外,此原理也可以用来发现异常用户(反盗刷、反爬虫)。
部分程度上说,聚类可以用来降维。这个没实践过,但理论上是一个可以实现的降维策略。
EDA 領域做 partition 的時候還滿常用到 k-means 算法的
我回答過的問題: Python-QA
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
暂无简介
文章 0 评论 0
接受
发布评论
评论(2)
能想到的场景或接触到的场景如下。
用户分类运营。一般情况下,运营给的分类标准比较多,比如RFM模型中就有三个变量,如果穷举所有变量为0,1也有8种。在一些线下或者个性化要求不高的场景中,聚类就是一个很好的策略,可以根据运营能接受的运营数目,给定聚类数来使用聚类。完成后为每个结果标注变量的大小,告诉运营每个类别的属性,然后分别制定不同的运营策略。
异常检测。这个往往在数据清洗中,可以排除掉一些典型有问题的数据;另外,此原理也可以用来发现异常用户(反盗刷、反爬虫)。
部分程度上说,聚类可以用来降维。这个没实践过,但理论上是一个可以实现的降维策略。
EDA 領域做 partition 的時候還滿常用到 k-means 算法的
我回答過的問題: Python-QA