关于Python嵌套循环代码优化

发布于 2022-09-03 13:42:25 字数 4324 浏览 9 评论 0

用Python实现K-means算法时候,要计算随机两个数之间的欧氏距离,数据量为5000行,但计算的时间却有500多秒,不知道有什么能优化,求指教,代码如下
循环

for i in range(len(data)):    # 计算任意两点距离和
    for j in range(i+1, len(data)):
        random_sum += ed_relate(data[i][2:], data[j][2:])

ed_relate

def ed_relate(dataX, dataY):
    '''
    :param dataX:第一行
    :param dataY: 第二行
    :return: 之间的相似度
    '''
    sum = 0
    if len(dataX) == len(dataY):
        for a in range(0, len(dataX)):
            sum += (float(dataX[a])-float(dataY[a])) ** 2
        relate = math.sqrt(sum)
        return relate
    else:
        print 'len is not equal'
        return 0

数据data

[['3', '0010000000000', '1', '1', '4', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '4', '4', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000000010', '1', '0', '4', '2', '1', '3', '3', '2', '3', '5', '3', '2', '2', '3', '4', '2', '2', '4', '1', '1', '1', '1', '3', '2', '3', '2', '2', '3', '2', '2', '3']
['3', '0010000000000', '1', '3', '2', '3', '3', '3', '3', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '2', '2', '2', '3']
['2', '1000000000000', '2', '1', '3', '4', '2', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '2', '2', '3', '3', '2', '2', '2', '2', '3', '2', '2']
['2', '1000000000000', '1', '1', '5', '3', '3', '3', '3', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '3']
['3', '0000000100000', '1', '0', '5', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '3', '3', '2']
['3', '0000000100000', '1', '0', '4', '2', '3', '3', '3', '2', '2', '2', '2', '2', '2', '1', '1', '2', '2', '2', '2', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0010000000000', '2', '1', '3', '4', '2', '2', '3', '2', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '3', '2', '2', '3']
['3', '0000010000000', '1', '1', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '3', '2', '2', '3', '2', '4', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '3', '2']
['3', '0010000000000', '3', '1', '4', '3', '3', '3', '4', '3', '3', '2', '3', '3', '2', '1', '1', '1', '4', '4', '4', '4', '4', '4', '3', '1', '1', '1', '1', '1', '1', '1', '1']
['1', '0100000000000', '3', '4', '1', '2', '3', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '4', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['2', '0000000000100', '1', '2', '3', '4', '3', '2', '3', '1', '2', '2', '2', '2', '2', '2', '2', '4', '2', '2', '2', '3', '3', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000000010', '1', '3', '3', '2', '2', '3', '2', '3', '3', '3', '3', '3', '2', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['1', '0100000000000', '1', '1', '3', '2', '3', '3', '3', '2', '3', '3', '3', '3', '3', '3', '2', '1', '1', '3', '2', '2', '3', '1', '1', '1', '1', '1', '2', '3', '3', '1', '2']
['1', '0100000000000', '1', '2', '4', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000100000', '1', '1', '3', '3', '3', '2', '4', '4', '4', '4', '4', '2', '2', '1', '1', '3', '3', '4', '3', '4', '3', '1', '2', '1', '1', '1', '2', '2', '1', '1', '1']
['3', '0010000000000', '1', '2', '3', '3', '3', '2', '2', '2', '2', '3', '2', '2', '2', '2', '3', '2', '2', '3', '3', '3', '2', '2', '2', '2', '3', '3', '3', '2', '2', '2', '2']
['3', '0000010000000', '1', '1', '5', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000010000000', '1', '1', '5', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000100000', '1', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']]
只给出了前20行

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

木森分化 2022-09-10 13:42:25

已经找到解决的办法,问题出在计算欧氏距离的两个 float
sum += (float(dataX[a])-float(dataY[a])) ** 2
先将data全转成 int
data = [[int(x) for x in row] for row in data]
在计算,速度提升了10倍

老娘不死你永远是小三 2022-09-10 13:42:25
def ed_relate(dataX, dataY):
    '''
    :param dataX:第一行
    :param dataY: 第二行
    :return: 之间的相似度
    '''
    if len(dataX) == len(dataY):
        relate = math.sqrt(sum(((float(x)-float(y)**2) for x, y in zip(dataX, dataY))))
        return relate
    else:
        print 'len is not equal'
        return 0

没测试,应该可以提高一些性能。

情绪少女 2022-09-10 13:42:25

看你现有的代码没有什么大问题,我把你的计算重复1000次,大致相当于20000条数据,时间在4.4秒。
你最好能 profile 一下看看问题在哪。

╰沐子 2022-09-10 13:42:25

性能方面貌似没有更好的办法, 不过呢, 我觉得你的那个二重循环可以写的更加优雅一点比如:

def unique_pairs(n):
    """在range(n)范围内生成索引对, 其他地方需要类似迭代可以复用unique_pairs生成器"""
    for i in range(n):
        for j in range(i+1, n):
            yield i, j
            

for i, j in unique_pairs(len(data)):  # 计算任意两点距离和
    random_sum += ed_relate(data[i][2:], data[j][2:])
    
椵侞 2022-09-10 13:42:25

用numpy和pandas

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文