Mixins
不再称为 Mixins
在Coption Api 1 中。
但这只是被删除的名称。实际上,它们的功能是该API的面包和黄油。
首先,构图API允许您在其 setup()
函数中移动组件的整个逻辑。这主要是全部。
一开始似乎并不是一笔大的交易,但是当您考虑它时,它实际上是因为它允许根据所需的任何标准对代码进行分组,而不一定是组件成员的类型 - 例如:(反应性)<代码>数据,计算
,方法
,观看
ers等...
其次,一旦定义了分组标准,可以采用代码使用 usestuff()
函数,从其自己的文件中导出并将其导入任意数量的组件。
这些是新的 mixins
: Composables 。与钩子非常相似。
公平地说,我发现构图API比Mixins API更好。
1 - 从技术上讲,这是不正确的。他们仍然存在以使为向后兼容,但不再推荐它们。组合是前进的路径。
db.test.insert({"Time" : new ISODate("2012-01-10") });
db.test.update({ criteria }, { newObj }, upsert, multi);
For example, to update all objects, consider
db.test.update( {}, { $set : { "time" : new ISODate("2012-01-11T03:34:54Z") } }, true, true);
您可以使用pandas方法 和:
df['color'] = 'green'
df['color'] = df['color'].where(df['Set']=='Z', other='red')
# Replace values where the condition is False
或者
df['color'] = 'red'
df['color'] = df['color'].mask(df['Set']=='Z', other='green')
# Replace values where the condition is True
,您可以使用lambda函数使用方法变换
:
df['color'] = df['Set'].transform(lambda x: 'green' if x == 'Z' else 'red')
输出:
Type Set color
1 A Z green
2 B Z green
3 B X red
4 C Y red
性能比较来自@chai:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC')*1000000, 'Set':list('ZZXY')*1000000})
%timeit df['color1'] = 'red'; df['color1'].where(df['Set']=='Z','green')
%timeit df['color2'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color3'] = np.where(df['Set']=='Z', 'red', 'green')
%timeit df['color4'] = df.Set.map(lambda x: 'red' if x == 'Z' else 'green')
397 ms ± 101 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
976 ms ± 241 ms per loop
673 ms ± 139 ms per loop
796 ms ± 182 ms per loop
如果满足条件并且在下一个条上没有条目,则可以取消待定订单。
只需使用 straging.cancel()
或 straging.cancel_all()
函数。将其添加到脚本的末尾:
if shortCondition[1] and strategy.position_size == 0
strategy.cancel_all()
您正在循环中创建许多桌子。而不是在 .map()
主体中输出整个表,而只输出行。将其他所有内容保持在该循环外:
return (
<div>
<div>
<table className='data-table-container'>
<tr>
<th>Customer Name</th>
<th>Phone Number</th>
<th>Loan Vehicle</th>
<th>Time Out</th>
<th>Time Due</th>
</tr>
{data.map(dat => {
return (
<tr>
<td>{dat.CustomerName}</td>
<td>{dat.PhoneNumber}</td>
<td>{dat.LoanVehicle}</td>
<td>{dat.TimeOut}</td>
<td>{dat.TimeDue}</td>
</tr>
);
})}
</table>
</div>
</div>
);
&lt; tbody&gt; elements明确地使其更加清楚自己。
return (
<div>
<div>
<table className='data-table-container'>
<thead>
<tr>
<th>Customer Name</th>
<th>Phone Number</th>
<th>Loan Vehicle</th>
<th>Time Out</th>
<th>Time Due</th>
</tr>
</thead>
<tbody>
{data.map(dat => {
return (
<tr>
<td>{dat.CustomerName}</td>
<td>{dat.PhoneNumber}</td>
<td>{dat.LoanVehicle}</td>
<td>{dat.TimeOut}</td>
<td>{dat.TimeDue}</td>
</tr>
);
})}
</tbody>
</table>
</div>
</div>
);
您可以通过明确分开&lt; thead&gt;
and 当没有数据显示时,添加默认的“无记录”行,只是为了获得更多用户体验:
return (
<div>
<div>
<table className='data-table-container'>
<thead>
<tr>
<th>Customer Name</th>
<th>Phone Number</th>
<th>Loan Vehicle</th>
<th>Time Out</th>
<th>Time Due</th>
</tr>
</thead>
<tbody>
{data.length > 0 ? data.map(dat => {
return (
<tr>
<td>{dat.CustomerName}</td>
<td>{dat.PhoneNumber}</td>
<td>{dat.LoanVehicle}</td>
<td>{dat.TimeOut}</td>
<td>{dat.TimeDue}</td>
</tr>
);
}) : <tr><td colspan="5">No records found</td></tr>}
</tbody>
</table>
</div>
</div>
);
这是您可以避免任何目录问题的方式
const path = require("path");
const multer = require("multer");
const storage = multer.diskStorage({
destination: function (req, file, cb) {
cb(null, path.join(__dirname, "../uploads"));
},
filename: function (req, file, cb) {
const uniqueSuffix = Date.now() + "-" + Math.round(Math.random() * 1e9);
cb(null, file.fieldname + "-" + uniqueSuffix + file.originalname);
},
});
首先,您可以识别异常值。该代码标识所有远离平均值的标准偏差的值。
outliers = df.loc [(df.value -df.value.mean())。abs()&gt; df.value.std() * 1] .index
然后您可以确定每个组的中位数:
中值= df.groupby('group')['value']。代码>
最后,找到异常值并替换为中位数:
df.loc [utliers,'value'] = mentians.loc [df.loc [outliers,'group'group'']]。to_list()
总共看起来像:
import pandas as pd
index = [0,1,2,3,4,5,6,7,8,9,10,11]
s = pd.Series(['A','A','A','A','A','A','B','B','B','B','B','B'],index= index)
t = pd.Series(['2022-06-28','2022-06-28','2022-06-28','2022-06-27','2022-06-27','2022-06-27',
'2022-06-28','2022-06-28','2022-06-28','2022-06-27','2022-06-27','2022-06-27'],index= index)
r = pd.Series([1,2,1,2,3,10,2,3,2,3,4,20],index= index)
df = pd.DataFrame(s,columns = ['group'])
df['date'] = t
df['value'] = r
outliers = df.loc[(df.value - df.value.mean()).abs() > df.value.std() * 1].index
medians = df.groupby('group')['value'].median()
df.loc[outliers, 'value'] = medians.loc[df.loc[outliers, 'group']].values
输出:
group date value
0 A 2022-06-28 1
1 A 2022-06-28 2
2 A 2022-06-28 1
3 A 2022-06-27 2
4 A 2022-06-27 3
5 A 2022-06-27 2
6 B 2022-06-28 2
7 B 2022-06-28 3
8 B 2022-06-28 2
9 B 2022-06-27 3
10 B 2022-06-27 4
11 B 2022-06-27 3
如果需要,每行的最大唯一值,对于每个类别而不是最大值,仅限上一行使用:
s = df[["lvl1", "lvl2", "lvl3"]].nunique(axis=1)
#if need test number of non missing values use count
#s = df[["lvl1", "lvl2", "lvl3"]].count(axis=1)
df = df[~s.duplicated(keep='last') | s.eq(s.max())]
print (df)
lvl1 lvl2 lvl3 value
2 aa xx ww 7
3 aa xx qq 22
6 bb yy rr 18
7 bb zz NaN 47
8 cc NaN NaN 10
9 aa sa jj 2
一个人可以指定令牌,但还必须指定访问密钥和秘密密钥:
s3 = fs.S3FileSystem(access_key="",
secret_key="",
session_token="")
一个人还必须实现一些方法来解析〜/.aws/cordentials文件以获取访问这些值或每次手动执行
我在用户名和文档上传时面临着相同的问题,然后在控制台侧给出了此错误
"Test.js:102
POST http://localhost:1337/api/jobs-forms 400 (Bad Request)
dispatchXhrRequest @ xhr.js:258
xhr @ xhr.js:49
dispatch request @ dispatchRequest.js:51
_request @ Axios.js:170
request @ Axios.js:40
httpMethod @ Axios.js:209
wrap @ bind.js:5
handleSubmit @ Test.js:102
await in handleSubmit (async)
callCallback @ react-dom.development.js:4164
invokeGuardedCallbackDev @ react-dom.development.js:4213
invokeGuardedCallback @ react-dom.development.js:4277
invokeGuardedCallbackAndCatchFirstError @ react-dom.development.js:4291
executeDispatch @ react-dom.development.js:9041
processDispatchQueueItemsInOrder @ react-dom.development.js:9073
processDispatchQueue @ react-dom.development.js:9086
dispatchEventsForPlugins @ react-dom.development.js:9097
(anonymous) @ react-dom.development.js:9288
batchedUpdates$1 @ react-dom.development.js:26140
batchedUpdates @ react-dom.development.js:3991
dispatchEventForPluginEventSystem @ react-dom.development.js:9287
dispatchEventWithEnableCapturePhaseSelectiveHydrationWithoutDiscreteEventReplay @ react-dom.development.js:6465
dispatchEvent @ react-dom.development.js:6457
dispatchDiscreteEvent @ react-dom.development.js:6430
Show 22 more frames
Show less
Test.js:113 Error: AxiosError {message: 'Request failed with status code 400', name: 'AxiosError', code: 'ERR_BAD_REQUEST', config: {…}, request: XMLHttpRequest, …}"
新的C ++标准有两个部分:语言功能和标准库组件。
正如您的意思是 新标准,语言本身的变化(例如,范围)几乎没有问题(有时在具有较新的标准语言功能的第三方图书馆标题中存在冲突)。
但是标准库...
每个编译器版本都具有C ++标准库的实现(libstdc ++带有gcc,libc ++带有clang,ms C ++标准库,带有VC ++,...同样在某些情况下,您可以使用其他标准库的实现,而不是提供的编译器。您应该关心的是将较旧的标准库实施与更新的库链接起来。
第三方库与您的代码之间可能发生的冲突是链接到该第三方库的标准库(和其他库)。
您可以使用dataframe构造函数,然后 groupby.agg
:
df = pd.DataFrame(res1_, columns=['docid', 'setid'])
group = df['docid'].ne(df['docid'].shift()).cumsum()
df = df.groupby(group.values).agg({'docid': 'first', 'setid': list})
输出:
docid setid
1 z1 [1, 2]
2 x1 [1]
3 x2 [1]
4 x1 [3]
5 z1 [1]
需要检查的某些内容:您是否还有其他内容覆盖 node.node
中的节点版本?根据 https://render.com/docs/node-version .Node 值将被
node_version
环境变量- a
.node-version
file 文件文件 file a repo - a
.nvmrc
。 >文件在您的存储库的根部。
另外,当您在渲染上部署时,您是否将节点选择为环境?
这是我创建的一个小测试,以验证奇数节点版本编号在渲染上起作用,并验证 preplaceAll()
在节点v17.4.0中起作用。
代码(也 https://github.com/crcastle/test-replaceall < /a>)
server.js
:
const http = require('http')
const requestListener = function (req, res) {
const orig = 'The quick brown fox jumps over the lazy dog. If the dog reacted, was it really lazy?';
const monkey = orig.replaceAll('dog', 'monkey');
// expected output: "The quick brown fox jumps over the lazy monkey. If the monkey reacted, was it really lazy?"
// global flag required when calling replaceAll with regex
const regex = /Dog/ig;
const ferret = orig.replaceAll(regex, 'ferret');
// expected output: "The quick brown fox jumps over the lazy ferret. If the ferret reacted, was it really lazy?"
const version = process.version;
res.writeHead(200);
res.end(`Original: ${orig}\nMonkey: ${monkey}\nFerret: ${ferret}\nI am Node version ${version}`);
};
const HOST = "0.0.0.0";
const PORT = process.env.PORT || 10000;
const server = http.createServer(requestListener);
server.listen(PORT, HOST, () => {
console.log(`Server is listening on http://${HOST}:${PORT}`);
});
package.json
:
{
"name": "test-replaceall",
"version": "1.0.0",
"description": "",
"main": "index.js",
"engines": {
"node": "17.4.0"
},
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"
}
output (也临时部署到 https://test-replaceall.onrender.com )
Original: The quick brown fox jumps over the lazy dog. If the dog reacted, was it really lazy?
Monkey: The quick brown fox jumps over the lazy monkey. If the monkey reacted, was it really lazy?
Ferret: The quick brown fox jumps over the lazy ferret. If the ferret reacted, was it really lazy?
I am Node version v17.4.0
构建和部署日志
Jun 15 04:07:08 PM ==> Cloning from https://github.com/crcastle/test-replaceall...
Jun 15 04:07:09 PM ==> Checking out commit 17972cbecfdeafc0eb1c4a09cad07400ab5c8bc1 in branch main
Jun 15 04:07:25 PM ==> Detected Node version 17.4.0
Jun 15 04:07:26 PM ==> Running build command 'npm i'...
Jun 15 04:07:27 PM up to date, audited 1 package in 297ms
Jun 15 04:07:27 PM found 0 vulnerabilities
Jun 15 04:07:43 PM ==> Uploading build...
Jun 15 04:07:49 PM ==> Build successful
在上使用
。根据
子句的顺序中的顺序,它将选择子集的第一个元素。例如:
Use
DISTINCT ON
. It will pick the first element for the subset, according to the ordering in theORDER BY
clause. For example:如何在Postgresql的不同城市获得最新约会