价格过滤器是由saleschannelproductentity :: CheepeStprice
生成的,因此请确保还要更改此问题,如文档中所示。
您可以使用scaletransform
并为其scalex
和scale> scaley
属性进行动画:
<Storyboard x:Key="ExpandingAnimation">
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="MyScaleTransform"
Storyboard.TargetProperty="(ScaleTransform.ScaleX)"
From="0" To ="1" Duration="0:0:3"/>
<DoubleAnimation
Storyboard.TargetName="MyScaleTransform"
Storyboard.TargetProperty="(ScaleTransform.ScaleY)"
From="0" To ="1" Duration="0:0:3"/>
</Storyboard>
</Storyboard>
...
<Grid x:Name="ExpandingGrid"
RenderTransformOrigin="0.5,0.5"
Height="222">
<Grid.RenderTransform>
<ScaleTransform x:Name="MyScaleTransform" ScaleX="0" ScaleY ="0" />
</Grid.RenderTransform>
</Grid>
# Create DataFrame from data dictionary:
# - set_index(0) makes the keys (column 0) the index values
# - .T takes the transpose and makes the index the columns
# .reset_index(drop=True) resets index to 0 (1 row DataFrame) and drops old index
df = pd.DataFrame(data.items()).set_index(0).T.reset_index(drop=True)
# Select first 3 columns to keep as is
df = df[['calories', 'cautions', 'dietLabels']]
# For loop logic to create all other columns
# Since not all keys from totalNutrients are wanted, they must be selected in col_list
col_list = ['CA', 'CHOLE', 'FAT', 'FE', 'FIBTG', 'K', 'MG', 'NA', 'PROCNT', 'SUGAR', 'VITC']
value_list = []
# For each key and value (dictionary) in data['totalNutrients']
for key, value in data['totalNutrients'].items():
# If key is in col_list
if key in col_list:
# Add value to value_list
value_list.append(value['quantity'])
# Create dictionary of columns and values using zip()
clean_data_dict = dict(zip(col_list, value_list))
# Concatenate df with new DataFrame on the same index. axis=1 to concatenate on columns
df = pd.concat([df, pd.DataFrame(clean_data_dict, index=[0])], axis=1)
print(df)
可选的
# To run the API multiple times and store each run:
# - Try loading data.csv
# - Add new data row to main_df and overwrite
# - If the file is not found then save first run df
try:
main_df = pd.read_csv('data.csv')
main_df = pd.concat([main_df, df])
main_df.reset_index(drop=True, inplace=True)
print(main_df)
main_df.to_csv('data.csv', index=False)
except FileNotFoundError:
df.to_csv('data.csv', index=False)
可选
# To change the column names at the end you can repeat the zip process
new_col_list = ['calories', 'cautions', 'diet_labels', 'calcium', 'cholesterol', 'fat', 'iron', 'dietary_fiber', 'potasssium', 'magnesium', 'sodium', 'protein', 'sugar', 'vitamin_c']
col_dict = dict(zip(col_list, new_col_list))
# .rename() uses a dict to map old column names to new column names
df.rename(columns=col_dict)
print(df)
为什么每个线程运行时间都不同,并且每次运行代码时间都不同?线程的运行时间取决于什么?
您的系统上有很多流程。系统上任何内容的运行时间都受内核安排能力的影响,这取决于系统上其他所有内容的活动。获得一致运行时间的唯一方法是使用某种实时内核(或不运行多个进程的嵌入式设备)。
为什么顺序比多线程更快?
使用多个线程很少会为您提供CPU密集型任务的性能优势。由于Python的设计,实际上只有一个线程同时执行。当您尝试并行化IO-BOND操作(例如,通过网络获取数据)时,线程最有用。
对于CPU密集型操作,多处理
模块通常是一个更好的选择(因为这会产生Python解释器的多个独立实例,并且可以利用多个CPU),但是在设置和撕裂中涉及的间接费用根据您的工作负载,这些过程使得解决方案没有比单个过程版本更好(甚至更糟)。
好吧,有不同的方法可以解决问题。一种方法是使用zipwith
订阅可观察到的源的管道操作员,并将其与任何数量的可观察结果输入的值结合使用。 zipwith
操作员是RXJS 8的替代zip
运算符。您可以做类似的事情:
import { zipWith } from 'rxjs';
private createResult() {
this.userObservable.getFullName().pipe(
zipWith(
this.userObservable.getPhoneNumber(),
this.userObservable.getEmailAddress()
),
map(([fullName, phoneNumber, emailAddress]) => this.httpService.createSomething(fullName, phoneNumber, emailAddress))
).subscribe((result) => console.log(result))
}
该方法的好处是,您没有将多个订阅彼此嵌套,这可能会导致意想不到的副作用。
您在正确的轨道上!几件事会有所帮助...
首先,您忽略了输出中的键信息,因为求解器说您的配方是不可行的!
Status: Infeasible
因此,变量中出现的任何内容都是胡言乱语,您必须首先弄清楚该部分。
那么,为什么不可行?看看您的约束。您正在尝试 force 如果您的距离值为零,则不可能无法正确:
prob += int(distances[w][b]) * J[w] >= 1
因此,您需要重新格式化!您在这里缺少一个概念。实际上,对于此问题,您需要2个约束。
- 如果路由太长,
- 您需要强制涵盖每个目的地,则需要约束源用途的选择。
您还需要一个双重指数的决策变量。为什么?好吧,可以说,来源'a'涵盖了目标1、2; “ B”覆盖2、3、4、5 ....您将能够知道所有目的地都被一个变量“覆盖”,但是您不知道使用了哪些源,因此您需要保持跟踪两者都得到完整的图片。
这是一个开始,还有几个编辑。我建议变量名称source
和目标
,因为这是标准的。在此特定问题中,您没有特定的需求
,只是需要连接。您可能还希望使用词典多于嵌套列表,我认为这更清楚。以下是一个示例以第一个约束开始。在限制覆盖变量时,请注意这里的技巧。如果距离小于限制,则s
,则可以满足此约束。例如,如果距离为3:
3 * 1 <= s
无论如何,这是建议的开始。另一个约束未实施。您将需要在所有来源上总结,以确保目的地被“覆盖”。如果您被卡住,请回信。
prob = LpProblem('source minimzer', LpMinimize)
dist_limit = 5
sources = ['A', 'B'] # the source locations
# note this is zero-indexed to work with the list indexes in dist dictionary...
destinations = list(range(5)) # the demand locations 0, 1, 2, 3, 4
dist = { 'A': [2, 23, 30, 54, 1],
'B': [3, 1, 2, 2, 3]}
covered = LpVariable.dicts('covered', [(s, d) for s in sources for d in destinations], cat='Binary')
# set up constraint to limit covered if the destination is "reachable"
for s in sources:
for d in destinations:
prob += covered[s, d] * dist[s][d] <= dist_limit
# add one more constraint to make sure that every destination is "covered"...
由于您需要根据您的条件删除和添加频道,因此我提到了一种方法来达到您的要求,它适用于您。
let Channels = {
"channel-1": "2022-06-29T11:20:14.000Z",
"channel-2": "2022-06-29T05:58:18.000Z",
"channel-3": "2022-06-29T05:18:49.000Z",
"channel-4": "2022-06-29T04:08:35.000Z",
"channel-5": "2022-06-29T01:52:31.000Z",
"channel-6": "2022-06-29T01:00:40.000Z",
"channel-7": "2022-06-29T00:59:47.000Z",
"channel-8": "2022-06-29T00:07:28.000Z",
"channel-9": "2022-06-28T23:55:27.000Z",
}
if(!channel.live) {
delete Channels[name];
Channels[name] = date.toJSON();
}
if(channel.live)
Channels = { [name]: time.toJSON(), ...Channels };
}
const updatedChannels = {};
Object.keys(Channels).sort().forEach(item => (updatedChannels[item] = Channels[item]));
Channels = updatedChannels;
const data=[{_id:"D01",name:"Lunetts",profession:"shop"},{_id:"D02",name:"Glasses",profession:"keeper"},{_id:"D03",name:"Auros",profession:"UiiSii"}];
const out = {};
for (const obj of data) {
out[obj._id] = obj.name;
}
console.log(out);
也许有两个传说,一个使用自定义字形?
draw_key_arrow_left <- function(data, params, size, dir) {
if (is.null(data$linetype)) {
data$linetype <- 0
} else {
data$linetype[is.na(data$linetype)] <- 0
}
segmentsGrob(0.9, 0.5, 0.1, 0.5,
gp = gpar(
col = alpha(data$colour %||% data$fill %||% "black", data$alpha),
# the following line was added relative to the ggplot2 code
fill = alpha(data$colour %||% data$fill %||% "black", data$alpha),
lwd = (data$size %||% 0.5) * .pt,
lty = data$linetype %||% 1,
lineend = "butt"
),
arrow = params$arrow
)
}
arrows2 <- arrows %>%
mutate(x_orig = x, xend_orig = xend,
x = if_else(direction == "forward", x_orig, xend_orig),
xend = if_else(direction == "forward", xend_orig, x_orig))
ggplot() +
geom_segment(data = arrows2 %>% filter(direction == "forward"),
aes(x, y, xend = xend, yend = yend, col = direction),
arrow = arrow(length = unit(0.3, "cm"), type = "closed")) +
scale_color_manual(values = "#F8766D") +
ggnewscale::new_scale_color() +
geom_segment(data = arrows2 %>% filter(direction == "backward"),
aes(x, y, xend = xend, yend = yend, col = direction),
arrow = arrow(length = unit(0.3, "cm"), type = "closed"),
key_glyph = "arrow_left") +
scale_color_manual(values = "#619CFF", name = "") +
theme(legend.key.width=unit(0.7,"cm"))
如@Teemu所示,您必须使用命名函数,因为如果要从侦听器中删除该功能,则需要对该函数进行引用。
因此,您没有在addeventListener()
中编写匿名函数,而是向其提供您在其他地方定义的函数的名称 - 最重要的是,不在循环中。
例如:
parent[i].addEventListener('mouseover', e => {
this.addChildrenActive(i)
});
变为
parent[i].addEventListener('mouseover', mouseOverHandler);
命名函数,
function mouseOverHandler(e)
{
console.log("mouse over", e.currentTarget);
}
您可能已经注意到该函数内部的e
参数。这将填充与事件有关的数据,例如事件的名称或元素引起的。
然后可以使用以下方式删除此听众:
parent[i].removeEventListener('mouseover', mouseOverHandler);
让我给您一个更完整的示例:
class Navigation {
constructor() {
this.isMobile = false;
this.parent = document.querySelectorAll("div");
this.navbarInteraction();
}
navbarInteraction() {
for (let i = 0; i < this.parent.length; i++) {
this.parent[i].removeEventListener('mouseover', this.addChildrenActive);
this.parent[i].removeEventListener('click', this.addChildrenActive);
if (this.isMobile) {
this.parent[i].addEventListener('click', this.addChildrenActive);
} else {
this.parent[i].addEventListener('mouseover', this.addChildrenActive);
}
}
}
addChildrenActive(e) {
console.log("addChildrenActive()", e.currentTarget, e.type);
}
}
let navigation = new Navigation();
<div id="divA">DIV1</div>
<div id="divB">DIV2</div>
<input type="checkbox" onchange="navigation.isMobile=this.checked;navigation.navbarInteraction();">
<span>isMobile</span>
前提您将调用sql_script
规则:
myTree = parser.sql_script();
您可以将combine_images
传递到预期列的功能号码
,space
像素中的图像和>
> images> images
的列表:
from PIL import Image
def combine_images(columns, space, images):
rows = len(images) // columns
if len(images) % columns:
rows += 1
width_max = max([Image.open(image).width for image in images])
height_max = max([Image.open(image).height for image in images])
background_width = width_max*columns + (space*columns)-space
background_height = height_max*rows + (space*rows)-space
background = Image.new('RGBA', (background_width, background_height), (255, 255, 255, 255))
x = 0
y = 0
for i, image in enumerate(images):
img = Image.open(image)
x_offset = int((width_max-img.width)/2)
y_offset = int((height_max-img.height)/2)
background.paste(img, (x+x_offset, y+y_offset))
x += width_max + space
if (i+1) % columns == 0:
y += height_max + space
x = 0
background.save('image.png')
combine_images(columns=3, space=20, images=['apple_PNG12507.png', 'banana_PNG838.png', 'blackberry_PNG45.png', 'cherry_PNG635.png', 'pear_PNG3466.png', 'plum_PNG8670.png', 'strawberry_PNG2595.png'])
7张图像和3列的结果:
您可以使用
附加
和条目
方法来跟踪对实体模型的更改。要确定模型您需要所有键You can use
Attach
andEntry
methods to track the changes to a entity model. To identify the model you would need all the keys (here I'm considering only one primary key:Id
)如何按实体框架核心选择和更新特定的列?