自我难过

文章 评论 浏览 29

自我难过 2025-02-20 16:29:39

我们可以使用块(arr,size)

  1. 如果 arr.length 小于或等于 size ,则不再有块。 的Singleton块
  2. 返回 [arr] 否则(归纳) arr.length 大于 size> size ,至少有一个块。将一个块从阵列的左侧切下来,并将其预先放置为递归子问题的结果。
function chunk(arr, size) {
  if (arr.length <= size)
    return [ arr ]                                                 // 1
  else
    return [ arr.slice(0, size), ...chunk(arr.slice(size), size) ] // 2
}

const a =
  [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]

const size =
  Math.ceil(a.length / 3)

const result =
  chunk(a, size)

console.log(
  JSON.stringify(result)
)

[[0,1,2,3],[4,5,6,7],[8,9]]

可视化评估 -

chunk([0,1,2,3,4,5,6,7,8,9], 4)
[ [0,1,2,3], ...chunk([4,5,6,7,8,9], 4) ]
[ [0,1,2,3], ...[ [4,5,6,7], ...chunk([8,9], 4) ] ]
[ [0,1,2,3], ...[ [4,5,6,7], ...[ [8,9] ] ] ]
[ [0,1,2,3], ...[ [4,5,6,7], [8,9] ] ]
[ [0,1,2,3], [4,5,6,7], [8,9] ]

We can write chunk(arr, size) using inductive reasoning -

  1. If arr.length is less than or equal to size, there are no more chunks to make. Return the singleton chunk of [ arr ]
  2. Otherwise (inductive) arr.length is greater than size, there is at least one chunk to make. Slice one chunk off the left of the array and prepend it to the result of the recursive sub-problem.

function chunk(arr, size) {
  if (arr.length <= size)
    return [ arr ]                                                 // 1
  else
    return [ arr.slice(0, size), ...chunk(arr.slice(size), size) ] // 2
}

const a =
  [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]

const size =
  Math.ceil(a.length / 3)

const result =
  chunk(a, size)

console.log(
  JSON.stringify(result)
)

[[0,1,2,3],[4,5,6,7],[8,9]]

Visualize the evaluation -

chunk([0,1,2,3,4,5,6,7,8,9], 4)
[ [0,1,2,3], ...chunk([4,5,6,7,8,9], 4) ]
[ [0,1,2,3], ...[ [4,5,6,7], ...chunk([8,9], 4) ] ]
[ [0,1,2,3], ...[ [4,5,6,7], ...[ [8,9] ] ] ]
[ [0,1,2,3], ...[ [4,5,6,7], [8,9] ] ]
[ [0,1,2,3], [4,5,6,7], [8,9] ]

如何将和数组分为n数组JavaScript

自我难过 2025-02-19 08:20:14

默认情况下,JSON数据源可以使用默认 InferSchema 选项从输入文件中推断架构。因此,如果将JSON存储在文件中,则无需自己定义它:

val df = spark.read.json("<PATH_to_JSON_File>", multiLine = "true")

仅当您的JSON记录跨越多行时,才需要使用 Multiline =“ True”
示例:

//read json file into dataframe
val df = spark.read.json("src/main/resources/myJsonFile.json")
df.printSchema()
df.show(false)

您仍然可以自己定义模式,但请注意,您的数组不一致。内部的键具有不同的名称,但它们也是不同的元素。您无法在JSON中的封闭数组中使用不同的键定义2个元素。这就像定义不同类型的2个要素。

因此,我认为您的JSON应该看起来像这样:“:[{“ A”:“ 6”,“ B”:7}]” 在这种情况下,您的模式应为:

val schema = ArrayType(StructType(Array(
               (StructField("a", StringType, true),
               (StructField("b", StringType, true)
              )), false)

false 字段表示您的数组不能接受 null 元素,但仍然可以将 null 放入列中。

By default JSON data source can infer schema from an input file using the default inferschema option. So if you have the json stored in a file, you don't need to define it yourself:

val df = spark.read.json("<PATH_to_JSON_File>", multiLine = "true")

You'll need to use multiLine = "true" only if your json record spans multiple lines.
Example:

//read json file into dataframe
val df = spark.read.json("src/main/resources/myJsonFile.json")
df.printSchema()
df.show(false)

You can still define the schema yourself, but note that your array is not consistent. The keys inside have different names, but they are different elements too. You can't define 2 elements with different keys in an enclosing array in your json. It's like defining 2 elements of different types.

So I think your json should look like this : ":[{"a":"6","b":7}]" in which case, your schema should be:

val schema = ArrayType(StructType(Array(
               (StructField("a", StringType, true),
               (StructField("b", StringType, true)
              )), false)

The false field means your array cannot accept null elements, but can still put null into the columns.

如何为火花中的一系列结构创建模式?

自我难过 2025-02-18 15:04:51

错误检查失败:您正在提供一个预期整数的字符串。除非您为 device.create()提供接口,否则它是不确定的。检查文档并确保您的输入数据具有正确的类型。

编辑:以下想法是伪造的 也可能会与您的输入混合:在像您一样使用速记对象表示法时,请确保您的参数具有正确的顺序。根据框架,您的输入可能只是错误的语法,因为您本质上是在没有键的情况下初始化对象,但是 img 。如果您的框架无法纠正这一点,这也可能是错误源。

但同样,如果没有更多有关该功能呼叫期望的信息以及您的参数类型的信息,请调试是算命的。

The error checks are failing: You are providing a string where an Integer is expected. What causes it is uncertain unless you provide the interface for Device.create(). Check the docs and make sure your input data has the correct types.

EDIT: The following thoughts were bogus There might also be a mix-up with your input: When using the shorthand object notation as you did, make sure your arguments have the right order. Depending on framework your input might just be wrong syntax, because you are essentially initializing an object with no keys but img. If your framework doesn't correct that, this might also be the error source.

But again, without further information on what the function call expects and what type your arguments have, debugging is fortune telling.

{消息&quot':“ type Integer的无效输入语法:\&quort” 12 pro \''' }以下错误在尝试以PostgreSQL发送发布请求时出现错误

自我难过 2025-02-18 08:18:33

也可以使用async_playwright尝试相同的方法:

import asyncio
from playwright.async_api import async_playwright
import time


# async def handle_dialog(dialog):
#     if dialog.message == 'You will be redirected to employer Login Portal.':
#       await dialog.dismiss()

async def main():
  # Create a browser instance.
  async with async_playwright() as playwright:
    browser = await playwright.firefox.launch(headless=False)
    #https://playwright.dev/docs/downloads
    context = await browser.new_context()
    # chromium_context = playwright.chromium.cast(context)
    # await chromium_context.set_browser_context_option("downloads", False)


    # Create a new page.
    page = await context.new_page()

    # Navigate to the specified URL.
    await page.goto('https://www.google.com/') 

    #https://stackoverflow.com/questions/72493916/closing-a-confirm-popup-with- 
    playwright-in-python/72513920#72513920
    page.on("dialog", lambda dialog: dialog.dismiss())
    # Wait for the page to load.
    await page.wait_for_load_state('networkidle', timeout=10000) # 10 secs 

    # Click on the "Sign In" button. 
    await page.wait_for_selector('css=#modal-content > span')
    mod =  page.locator('css=#modal-content > span')
    await mod.click()

    await page.wait_for_selector('css=body > div._bodyMID.pdGridM > div > 
    div.col-md-9.col-sm-8._action4Mob.homesearch > div.service-listnew > ul > 
    li.service1.single-ser > a')
    employerlogin =  page.locator('css=body > div._bodyMID.pdGridM > div > 
    div.col-md-9.col-sm-8._action4Mob.homesearch > div.service-listnew > ul > 
    li.service1.single-ser > a')
    await employerlogin.click()

   
    time.sleep(30)

    #await page.close()
    # close the context
    #await context.close()

    # Close the browser.
    #await browser.close()


 asyncio.run(main()) # one time callable

Same can be tried with async_playwright as well:

import asyncio
from playwright.async_api import async_playwright
import time


# async def handle_dialog(dialog):
#     if dialog.message == 'You will be redirected to employer Login Portal.':
#       await dialog.dismiss()

async def main():
  # Create a browser instance.
  async with async_playwright() as playwright:
    browser = await playwright.firefox.launch(headless=False)
    #https://playwright.dev/docs/downloads
    context = await browser.new_context()
    # chromium_context = playwright.chromium.cast(context)
    # await chromium_context.set_browser_context_option("downloads", False)


    # Create a new page.
    page = await context.new_page()

    # Navigate to the specified URL.
    await page.goto('https://www.google.com/') 

    #https://stackoverflow.com/questions/72493916/closing-a-confirm-popup-with- 
    playwright-in-python/72513920#72513920
    page.on("dialog", lambda dialog: dialog.dismiss())
    # Wait for the page to load.
    await page.wait_for_load_state('networkidle', timeout=10000) # 10 secs 

    # Click on the "Sign In" button. 
    await page.wait_for_selector('css=#modal-content > span')
    mod =  page.locator('css=#modal-content > span')
    await mod.click()

    await page.wait_for_selector('css=body > div._bodyMID.pdGridM > div > 
    div.col-md-9.col-sm-8._action4Mob.homesearch > div.service-listnew > ul > 
    li.service1.single-ser > a')
    employerlogin =  page.locator('css=body > div._bodyMID.pdGridM > div > 
    div.col-md-9.col-sm-8._action4Mob.homesearch > div.service-listnew > ul > 
    li.service1.single-ser > a')
    await employerlogin.click()

   
    time.sleep(30)

    #await page.close()
    # close the context
    #await context.close()

    # Close the browser.
    #await browser.close()


 asyncio.run(main()) # one time callable

Sync_playwright()。start()似乎已悬挂

自我难过 2025-02-18 00:37:02

0。在转换后保存整数类型,

如Alex Riley的答案所示, pd.to_numeric(...,errors ='coerce')将整数转换为浮点。

要保留整数,您必须使用可无效的整数dtype,例如'int64'。一个选项是呼叫 .convert_dtypes()如Alex Riley的答案中。或者只使用 .astype('int64')

自PANDAS 2.0以来的另一个选项是传递 dtype_backend 参数,该参数允许您在一个函数调用中转换DTYPE。

df = pd.DataFrame({'A': ['#DIV/0!', 3, 5]})
df['A'] = pd.to_numeric(df['A'], errors='coerce').convert_dtypes()
df['A'] = pd.to_numeric(df['A'], errors='coerce').astype('Int64')

df['A'] = pd.to_numeric(df['A'], errors='coerce', dtype_backend='numpy_nullable')

以上所有这些都会进行以下转换:

“

的字符串表示,则将长浮子的字符串表示为数字值

1。如果列包含需要用精确评估的真正长浮子 ( float 将在15位数字和 pd.to_numeric 更加不精确之后将它们围住,然后使用 DECIMAL 从内置的 DECIMAL 库中使用。列的dtype将为对象,但 DECIMAL.DECIMAL 支持所有算术操作,因此您仍然可以执行诸如算术和比较操作员等矢量化操作。

from decimal import Decimal
df = pd.DataFrame({'long_float': ["0.1234567890123456789", "0.123456789012345678", "0.1234567890123456781"]})

df['w_float'] = df['long_float'].astype(float)       # imprecise
df['w_Decimal'] = df['long_float'].map(Decimal)      # precise

在上面的示例中, float 将所有这些转换为相同的数字,而 DECIMAL 保持差异:

df['w_Decimal'] == Decimal(df.loc[1, 'long_float'])   # False, True, False
df['w_float'] == float(df.loc[1, 'long_float'])       # True, True, True

将长整数的字符串表示为整数

2。默认情况下 , astype(int)转换为 int32 ,如果一个数字特别长(例如电话号码),则无法使用( OverFloperRor );尝试'int64'(甚至 float ):

df['long_num'] = df['long_num'].astype('int64')

在旁注,如果您获得 setterwithCopyWarning ,请打开折线,然后打开复印件。模式(请参阅此答案以获取更多信息),然后再做任何事情。例如,如果您将 col1 col2 转换为float dtype,则执行:

pd.set_option('mode.copy_on_write', True)
df[['col1', 'col2']] = df[['col1', 'col2']].astype(float)

# or use assign to overwrite the old columns and make a new copy
df = df.assign(**df[['col1', 'col2']].astype(float))

3。将整数转换为timeDERTA

,也可以将长字符串/整数date -dateTime或TimeDETTA,in在哪种情况下,请使用 to_datetime to_timedelta 转换为dateTime/timeDELTA dtype:

df = pd.DataFrame({'long_int': ['1018880886000000000', '1590305014000000000', '1101470895000000000', '1586646272000000000', '1460958607000000000']})
df['datetime'] = pd.to_datetime(df['long_int'].astype('int64'))
# or
df['datetime'] = pd.to_datetime(df['long_int'].astype(float))

df['timedelta'] = pd.to_timedelta(df['long_int'].astype('int64'))

“

4。将TIMSEDELTA转换为数字

,以执行反向操作(Convert dateTime/timeDelta到数字),将其视为'int64'。如果您要建立一个以某种方式将时间(或DateTime)作为数字值包含的机器学习模型,这可能很有用。只要确保原始数据是字符串,则必须将它们转换为timedelta或dateTime,然后再转换为数字。

df = pd.DataFrame({'Time diff': ['2 days 4:00:00', '3 days', '4 days', '5 days', '6 days']})
df['Time diff in nanoseconds'] = pd.to_timedelta(df['Time diff']).view('int64')
df['Time diff in seconds'] = pd.to_timedelta(df['Time diff']).view('int64') // 10**9
df['Time diff in hours'] = pd.to_timedelta(df['Time diff']).view('int64') // (3600*10**9)

5。将日期时间转换为日期时间的数字

,DateTime的数字视图是DateTime和Unix Epoch(1970-01-01)之间的时间差。

df = pd.DataFrame({'Date': ['2002-04-15', '2020-05-24', '2004-11-26', '2020-04-11', '2016-04-18']})
df['Time_since_unix_epoch'] = pd.to_datetime(df['Date'], format='%Y-%m-%d').view('int64')

6。 astype to_numeric 更快

df = pd.DataFrame(np.random.default_rng().choice(1000, size=(10000, 50)).astype(str))
df = pd.concat([df, pd.DataFrame(np.random.rand(10000, 50).astype(str), columns=range(50, 100))], axis=1)

%timeit df.astype(dict.fromkeys(df.columns[:50], int) | dict.fromkeys(df.columns[50:], float))
# 488 ms ± 28 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit df.apply(pd.to_numeric)
# 686 ms ± 45.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

0. Preserve integer type after conversion

As can be seen in Alex Riley's answer, pd.to_numeric(..., errors='coerce') converts integers into floats.

To preserve the integers, you must use a Nullable Integer Dtype such as 'Int64'. One option for that is to call .convert_dtypes() as in Alex Riley's answer. Or just use .astype('Int64').

Another option available since pandas 2.0, is to pass the dtype_backend parameter, which allows you to convert the dtype in one function call.

df = pd.DataFrame({'A': ['#DIV/0!', 3, 5]})
df['A'] = pd.to_numeric(df['A'], errors='coerce').convert_dtypes()
df['A'] = pd.to_numeric(df['A'], errors='coerce').astype('Int64')

df['A'] = pd.to_numeric(df['A'], errors='coerce', dtype_backend='numpy_nullable')

All of the above make the following transformation:

result

1. Convert string representation of long floats to numeric values

If a column contains string representation of really long floats that need to be evaluated with precision (float would round them after 15 digits and pd.to_numeric is even more imprecise), then use Decimal from the builtin decimal library. The dtype of the column will be object but decimal.Decimal supports all arithmetic operations, so you can still perform vectorized operations such as arithmetic and comparison operators etc.

from decimal import Decimal
df = pd.DataFrame({'long_float': ["0.1234567890123456789", "0.123456789012345678", "0.1234567890123456781"]})

df['w_float'] = df['long_float'].astype(float)       # imprecise
df['w_Decimal'] = df['long_float'].map(Decimal)      # precise

res

In the example above, float converts all of them into the same number whereas Decimal maintains their difference:

df['w_Decimal'] == Decimal(df.loc[1, 'long_float'])   # False, True, False
df['w_float'] == float(df.loc[1, 'long_float'])       # True, True, True

2. Convert string representation of long integers to integers

By default, astype(int) converts to int32, which wouldn't work (OverflowError) if a number is particularly long (such as phone number); try 'int64' (or even float) instead:

df['long_num'] = df['long_num'].astype('int64')

On a side note, if you get SettingWithCopyWarning, then turn on copy-on-write mode (see this answer for more info) and do whatever you were doing again. For example, if you were converting col1 and col2 to float dtype, then do:

pd.set_option('mode.copy_on_write', True)
df[['col1', 'col2']] = df[['col1', 'col2']].astype(float)

# or use assign to overwrite the old columns and make a new copy
df = df.assign(**df[['col1', 'col2']].astype(float))

3. Convert integers to timedelta

Also, the long string/integer maybe datetime or timedelta, in which case, use to_datetime or to_timedelta to convert to datetime/timedelta dtype:

df = pd.DataFrame({'long_int': ['1018880886000000000', '1590305014000000000', '1101470895000000000', '1586646272000000000', '1460958607000000000']})
df['datetime'] = pd.to_datetime(df['long_int'].astype('int64'))
# or
df['datetime'] = pd.to_datetime(df['long_int'].astype(float))

df['timedelta'] = pd.to_timedelta(df['long_int'].astype('int64'))

res1

4. Convert timedelta to numbers

To perform the reverse operation (convert datetime/timedelta to numbers), view it as 'int64'. This could be useful if you were building a machine learning model that somehow needs to include time (or datetime) as a numeric value. Just make sure that if the original data are strings, then they must be converted to timedelta or datetime before any conversion to numbers.

df = pd.DataFrame({'Time diff': ['2 days 4:00:00', '3 days', '4 days', '5 days', '6 days']})
df['Time diff in nanoseconds'] = pd.to_timedelta(df['Time diff']).view('int64')
df['Time diff in seconds'] = pd.to_timedelta(df['Time diff']).view('int64') // 10**9
df['Time diff in hours'] = pd.to_timedelta(df['Time diff']).view('int64') // (3600*10**9)

res3

5. Convert datetime to numbers

For datetime, the numeric view of a datetime is the time difference between that datetime and the UNIX epoch (1970-01-01).

df = pd.DataFrame({'Date': ['2002-04-15', '2020-05-24', '2004-11-26', '2020-04-11', '2016-04-18']})
df['Time_since_unix_epoch'] = pd.to_datetime(df['Date'], format='%Y-%m-%d').view('int64')

res4

6. astype is faster than to_numeric

df = pd.DataFrame(np.random.default_rng().choice(1000, size=(10000, 50)).astype(str))
df = pd.concat([df, pd.DataFrame(np.random.rand(10000, 50).astype(str), columns=range(50, 100))], axis=1)

%timeit df.astype(dict.fromkeys(df.columns[:50], int) | dict.fromkeys(df.columns[50:], float))
# 488 ms ± 28 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit df.apply(pd.to_numeric)
# 686 ms ± 45.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

更改Pandas中的列类型

自我难过 2025-02-17 21:47:33

尝试将其

...
late Future<ImageProvider> imageProviderFuture;

  @override
  void initState() {
   
    imageProviderFuture = Buttons.getGroupchatImage(widget.groupchat.Id, context),
    super.initState();
  }
...
//in your build
// future call imageProviderFuture

FutureBuilder<ImageProvider>(
 future: imageProviderFuture,
)


应用于其余的地方。
ps请参阅此 link

Try this

...
late Future<ImageProvider> imageProviderFuture;

  @override
  void initState() {
   
    imageProviderFuture = Buttons.getGroupchatImage(widget.groupchat.Id, context),
    super.initState();
  }
...
//in your build
// future call imageProviderFuture

FutureBuilder<ImageProvider>(
 future: imageProviderFuture,
)


Apply this to the rest of the places.
P.S refer to thisLink

Flutter FutureBuilder两次叫

自我难过 2025-02-17 21:32:25

看起来您只需要一个简单的案例表达式,

select Article, [Desc.],
    case when UM = 'PC' then Value end ValuePC,
    case when UM = 'CT' then Value end ValueCT
from t;

This looks like you just need a simple case expression,

select Article, [Desc.],
    case when UM = 'PC' then Value end ValuePC,
    case when UM = 'CT' then Value end ValueCT
from t;

SQL,如果否则,将一些值从列移动到另一列

自我难过 2025-02-17 12:32:13

考虑一个极为基本的示例:

irb(main):003:0> a = [1, 2, 3]
=> [1, 2, 3]
irb(main):004:0> a.each { |x| p x }
1
2
3
=> [1, 2, 3]
irb(main):005:0>

#each 方法
正在返回枚举对象。

如果我将其包裹在方法中,则该方法将返回最后一个表达式,该表达式评估 enumerable 对象 a

irb(main):006:0> def foo(a)
irb(main):007:1>   a.each { |x| puts x }
irb(main):008:1> end
=> :foo
irb(main):009:0> foo([1, 2, 3])
1
2
3
=> [1, 2, 3]
irb(main):010:0> 

Consider an extremely basic example:

irb(main):003:0> a = [1, 2, 3]
=> [1, 2, 3]
irb(main):004:0> a.each { |x| p x }
1
2
3
=> [1, 2, 3]
irb(main):005:0>

The #each method
is returning the Enumerable object.

If I wrap this in a method, the method returns the last expression, which evaluates to the Enumerable object a.

irb(main):006:0> def foo(a)
irb(main):007:1>   a.each { |x| puts x }
irb(main):008:1> end
=> :foo
irb(main):009:0> foo([1, 2, 3])
1
2
3
=> [1, 2, 3]
irb(main):010:0> 

Ruby函数如何返回值,即使没有返回?

自我难过 2025-02-17 10:06:27

您可以尝试制作在启动时运行的批处理脚本。此批处理脚本将 cd 到包含要运行的Python文件的目录,并最终通过执行 python main.py 来运行Python文件。

You could try making a batch script that runs at startup. This batch script would cd to the directory containing the python file that you want to run, and ultimately run the python file by doing python main.py.

使用Python在启动时运行脚本

自我难过 2025-02-16 20:45:55

据我了解,您的问题是如何实现文本框颜色使用 systemcolors.control 的默认值的视觉状态。 /code>状态和不同的自定义颜色时。

我知道的最简单方法是处理 readonlychanged textbox 控件的事件。例如:

public Form1()
{
    InitializeComponent();
    textBox2.ReadOnlyChanged += (sender, e) =>
    {
        textBox2.BackColor = textBox2.ReadOnly ? SystemColors.Control : Color.Blue;
    };
}

并在设置自定义背景颜色时首先检查状态:

private void button3_Click(object sender, EventArgs e)
{
    textBox2.BackColor = textBox2.ReadOnly ? SystemColors.Control : Color.Blue;
}

Your question as I understand it is how to achieve a visual state where the textbox color uses the default value of SystemColors.Control when the TextBox is in the ReadOnly state and a different custom color when it's not.

The easiest way I know of to do that is to handle the ReadOnlyChanged event of the TextBox controls. For example:

public Form1()
{
    InitializeComponent();
    textBox2.ReadOnlyChanged += (sender, e) =>
    {
        textBox2.BackColor = textBox2.ReadOnly ? SystemColors.Control : Color.Blue;
    };
}

and also checking the state first when you set the custom background color:

private void button3_Click(object sender, EventArgs e)
{
    textBox2.BackColor = textBox2.ReadOnly ? SystemColors.Control : Color.Blue;
}

如果背景已更改,则文本框不使用可读的颜色

自我难过 2025-02-16 02:10:12

如评论中提到的那样,简单,快速和肮脏的解决方案是

std::sort(first,last, [](const auto& a,const auto& b) { 
          return titleSort(&a,&b) < 0; 
});

因为 std :: sort 的比较器应返回 true a&lt; b false 否则。当 a&lt; b 然后 titlesort 返回 -1 0 或或 1 否则。因此,您要映射 1 true 0 1 to false ,和&lt; 0 这样做。

您还需要考虑 std :: sort 的比较器必须符合指定要求比较。典型的比较可以做到这一点,但是当它们不使用 std :: sort 的情况下,不确定。我没有发现 QSort 的类似要求。

As mentioned in a comment, the simple, quick, and dirty solution is

std::sort(first,last, [](const auto& a,const auto& b) { 
          return titleSort(&a,&b) < 0; 
});

Because the comparator for std::sort should return true when a < b and false otherwise. When a < b then titleSort returns -1 and 0 or 1 otherwise. Hence you want to map 1 to true and 0 and 1 to false, and < 0 does that.

You also need to consider that the comparator for std::sort must conform to the named requirement Compare. Typical comparisons do that, but when they don't then using them with std::sort is undefined. I didn't find similar requirement for qsort.

将Qsort函数转换为std :: sort

自我难过 2025-02-16 01:29:44

您必须添加内容类型

var request = new RestRequest(Method.POST);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer "+token);

.... your code

var body="{\"storage_id\":\"bl_1\",\"product_id\":\"67564668\",\"variant_id\":1055421650,\"name\":\"42\",\"quantity\":5,\"price_brutto\":599.99,\"ean\":29193201490}";

request.AddParameter("application/json",body,ParameterType.RequestBody);
IRestResponse response = client.Execute(request);
var json=response.Content;

you have to add content type

var request = new RestRequest(Method.POST);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer "+token);

.... your code

var body="{\"storage_id\":\"bl_1\",\"product_id\":\"67564668\",\"variant_id\":1055421650,\"name\":\"42\",\"quantity\":5,\"price_brutto\":599.99,\"ean\":29193201490}";

request.AddParameter("application/json",body,ParameterType.RequestBody);
IRestResponse response = client.Execute(request);
var json=response.Content;

RESTSHARP-不良转换字符串到JSON C#

自我难过 2025-02-15 18:40:45

我认为我们也可以这样做

[ r for r in [x] if 1 < x < 5 ]

I think we can do this way as well

[ r for r in [x] if 1 < x < 5 ]

如果在列表中的条件理解中没有估计的默认值

自我难过 2025-02-14 17:07:12

我是Mark Rotteveel的#6建议的粉丝(在上面的评论中):

  • 下载时使用临时名称,
  • 在下载完成后重命名。

看起来像:

  • FTP下载线程写入所有文件,上面有一些添加的扩展名 - 也许 .pending - 但无论您想要什么名称。
  • 下载文件时 - 说 some.pdf - &nbsp; ftp下载线程将文件写入 some.pdf.pend.pending
  • 当FTP下载线程完成文件时,最后一步是文件重命名操作 - 这是确保仅准备处理“完成”文件的机制。因此,它将文件下载到 some.pdf.perding ,然后将其重命名为 some.pdf
  • 读者线程查找文件,忽略了任何匹配的*。待处理

我使用此方法构建了系统,它们效果很好。相比之下,我还与更复杂的系统合作,这些系统试图跨线程协调,并且这些系统通常无法正常工作。

随着时间的流逝,任何软件系统都会有错误。 Edsger Dijkstra很好地抓住了这一点:

“如果调试是删除软件错误的过程,则编程必须是将其放入的过程。”

但是,很难理解程序正确性现在 - &nbsp;当该程序仍处于设计阶段时,
而且尚未建立 - &nbsp;当生产中损坏的情况时,要理解正确性(由于错误)时,将是更难的。
也就是说,当事情被打破并且您在时间的压力下找到根本原因(并修复它!),即使我们中最好的人都会处于不利地位
具有复杂的(与简单)系统。

使用临时名称的方法很容易理解,这应该最大程度地减少代码复杂性,从而使其更容易实现。
反过来,维护和错误修复也应该更容易。

保持简单 - 让文件系统为您提供帮助。

I'm a fan of Mark Rotteveel's #6 suggestion (in comments above):

  • use a temporary name when downloading,
  • rename when download is complete.

That looks like:

  • FTP download threads write all files with some added extension – perhaps .pending – but name it whatever you want.
  • When a file is downloaded – say some.pdf – the FTP download thread writes the file to some.pdf.pending
  • When an FTP download thread completes a file, the last step is a file rename operation – this is the mechanism for ensuring only "done" files are ready to be processed. So it downloads the file to some.pdf.pending, then at the end, renames it to some.pdf.
  • Reader threads look for files, ignoring anything matching *.pending

I've built systems using this approach and they worked out well. In contrast, I've also worked with more complicated systems that tried to coordinate across threads and.. those often did not work so well.

Over time, any software system will have bugs. Edsger Dijkstra captured this so well:

"If debugging is the process of removing software bugs, then programming must be the process of putting them in."

However difficult it is to reason about program correctness now – while the program is still in design phase,
and has not yet been built – it will be harder to reason about correctness when things are broken in production (which will happen, because bugs).
That is, when things are broken and you're under time pressure to find the root cause (and fix it!), even the best of us would be at a disadvantage
with a complicated (vs. simple) system.

The approach of using temporary names is simple to reason about, which should minimize code complexity and thus make it easier to implement.
In turn, maintenance and bug fixes should be easier, too.

Keep it simple – let the filesystem help you out.

如何等到从Java的FTP服务器下载整个文件?

自我难过 2025-02-14 05:26:21

您可以喜欢:

<script th:inline="javascript">
$('#' + [[${answerList.answer_id}]] + 'answer_id').text();
</script>

You can do like:

<script th:inline="javascript">
$('#' + [[${answerList.answer_id}]] + 'answer_id').text();
</script>

如何使用jQuery检索百叶窗动态ID值的值?

更多

推荐作者

櫻之舞

文章 0 评论 0

弥枳

文章 0 评论 0

m2429

文章 0 评论 0

野却迷人

文章 0 评论 0

我怀念的。

文章 0 评论 0

更多

友情链接

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文