您需要运行 git push origans master
以推动github远程存储库中的更改,因为您在 Master
您本地的分支
使用 nx 工作区,这将允许您管理多个存储库。
有一个名为“ libs” in工作区的文件夹,我们可以从那里添加通用模块,我们可以向所有其他存储库共享组件和服务。
阅读NX文档以获取更多信息。 https://nx.dev/getting-petting-petting-started/nx-anded/nx-and-ang-angular
为什么不使用行访问策略?它可能需要进行一些调整,但是您可以创建类似的行访问策略:
create or replace row access policy test_policy as (val varchar) returns boolean ->
case
when lower(current_statement()) like '%select%*%'
then false else true end;
如果查询中存在选择 *
,将此策略应用于表格将不会返回任何记录。您可以将此策略应用于每个表,并且不会以任何方式影响您的架构。
您必须有一个枚举实例,目前,您只有它的“蓝图”。创建您的位置字段(我将其重命名为位置类型)并使用它。另外,作为个人喜好,我不喜欢将我的枚举嵌入课堂上,因为您每次使用时都必须在类名称上前缀。
一个示例:
import java.util.*;
import java.lang.*;
import java.io.*;
class Profession {
public enum PositionTypes {
Developer, Mechanic, Director
}
private PositionTypes _position;
public void setPosition(PositionTypes position) {
_position = position;
}
public PositionTypes getPosition() {
return _position;
}
}
class Main {
public static void main(String[] args) {
Profession p1 = new Profession();
System.out.println(p1.getPosition());
p1.setPosition(Profession.PositionTypes.Director);
System.out.println(p1.getPosition());
if (p1.getPosition() == Profession.PositionTypes.Director)
System.out.println("We made a check!");
}
}
此输出:
null
Director
We made a check!
您不能将两个变量传递到 set
,但是可以传递对象(或数组)。
class Circle {
get defaultLocation() {
return this._defaultLocation
}
set defaultLocation(loc) {
this._defaultLocation = loc
}
constructor(radius) {
this.radius = radius;
this._defaultLocation = {
x: 0,
y: 0
};
}
}
const circle = new Circle(10);
circle.defaultLocation = {
x: 5,
y: 6
};
该模型的第一层期望两个通道,而不是一个。
只需将正确的输入形状传递给“摘要”如下:
summary(model, ((2, dim1),(2,dim2))
编辑:在正向函数中,我将进行串联(如果两个模型的输入都具有相同的形状):
w = torch.cat([x,y], dim=1)
w = self.flatten(w)
编辑:
这是使用正确实现的工作代码
from torch import nn
import torch.nn.functional as F
import torch
class myDNN(nn.Module):
def __init__(self):
super(myDNN, self).__init__()
# layers definition
# first convolutional block
self.path1_conv1 = nn.Conv1d(in_channels=2, out_channels=8, kernel_size=7)
self.path1_pool1 = nn.MaxPool1d(kernel_size = 2, stride=2)
# second convolutional block
self.path1_conv2 = nn.Conv1d(in_channels=8, out_channels=16, kernel_size=3)
self.path1_pool2 = nn.MaxPool1d(kernel_size = 2, stride=2)
# third convolutional block
self.path1_conv3 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
self.path1_pool3 = nn.MaxPool1d(kernel_size = 2, stride=2)
# fourth convolutional block
self.path1_conv4 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3)
self.path1_pool4 = nn.MaxPool1d(kernel_size = 2, stride=2)
# fifth convolutional block
self.path1_conv5 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3)
self.path1_pool5 = nn.MaxPool1d(kernel_size = 2, stride=2)
self.path2_conv1 = nn.Conv1d(in_channels=2, out_channels=8, kernel_size=7)
self.path2_pool1 = nn.MaxPool1d(kernel_size = 2, stride=2)
# second convolutional block
self.path2_conv2 = nn.Conv1d(in_channels=8, out_channels=16, kernel_size=3)
self.path2_pool2 = nn.MaxPool1d(kernel_size = 2, stride=2)
# third convolutional block
self.path2_conv3 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
self.path2_pool3 = nn.MaxPool1d(kernel_size = 2, stride=2)
# fourth convolutional block
self.path2_conv4 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3)
self.path2_pool4 = nn.MaxPool1d(kernel_size = 2, stride=2)
# fifth convolutional block
self.path2_conv5 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3)
self.path2_pool5 = nn.MaxPool1d(kernel_size = 2, stride=2)
self.flatten = nn.Flatten()
self.drop1 = nn.Dropout(p=0.5)
self.fc1 = nn.Linear(in_features=2048, out_features=50) #3200 is a random number,probably wrong
self.drop2 = nn.Dropout(p=0.5) #dropout
self.fc2 = nn.Linear(in_features=50, out_features=25)
self.fc3 = nn.Linear(in_features=25, out_features=2)
def forward(self, x, y):
x = F.relu(self.path1_conv1(x))
x = self.path1_pool1(x)
x = F.relu(self.path1_conv2(x))
x = self.path1_pool2(x)
x = F.relu(self.path1_conv3(x))
x = self.path1_pool3(x)
x = F.relu(self.path1_conv4(x))
x = self.path1_pool3(x)
x = F.relu(self.path1_conv5(x))
x = self.path1_pool5(x)
y = F.relu(self.path2_conv1(y))
y = self.path2_pool1(y)
y = F.relu(self.path2_conv2(y))
y = self.path2_pool2(y)
y = F.relu(self.path2_conv3(y))
y = self.path2_pool3(y)
y = F.relu(self.path2_conv4(y))
y = self.path2_pool3(y)
y = F.relu(self.path2_conv5(y))
y = self.path2_pool5(y)
#flatten
x = self.flatten(x)
y = self.flatten(y)
w = torch.cat([x,y],dim=1)
print(w.shape)
w = self.drop1(w) #dropout layer
w = F.relu(self.fc1(w)) #layer fully connected with re lu
w = self.drop2(w)
w = F.relu(self.fc2(w)) #layer fully connected with re lu
w = self.fc3(w) #layer fully connected
out = F.log_softmax(w, dim=1)
return out
def main():
model = myDNN()
print(model)
from torchsummary import summary
if torch.cuda.is_available():
summary(model.cuda(), input_size = [(2,246),(2,447)])
else:
summary(model, input_size = [(2,246),(2,447)])
if __name__ == '__main__':
main()
这就是要做的。
${folder}:
mkdir -p ${folder}
复制并粘贴公式:
也许您可以从“ jquery.sheet”中复制并粘贴所需的公式。移至:
https://github.com/spreadsheets/wickedgrid
看起来都是“开源”
也不会解决该问题
:“启用脚本使用标准电子表格函数”的问题被标记为“不会修复”,请参见 https:// https:/// code.google.com/p/google-apps-script-issues/issues/detail?id=26
ethercalc
像OpenSource电子表格一样,有一个名为Ethercalc
GUI代码的Google:
https://github.com/audreyt/ethercalc
公式: https://github.com/marcelklehr/socialcalc
demo-在Sandstorm上:
https://apps.sandstorm.io/app/a0n6hwm32zjsrzes8gnjg734dh6jwt7x83xdgytspe761pe2asw0
总结我的评论:
您可能需要将新废品中的预测数据附加到同一数据库表中的现有数据。
从每个新的Web绑架中,您将获得大约。 40新记录具有相同的报废时间戳记,但预测时间戳不同。
例如,这将是使用 id
作为主键的 autoincrement
:
id | scrapping_time | forecast_hours | wind_speed | wind_gusts | wind_direction wind_direwave | wave wave | wave | wave |
---|
:
如果使用sqlite,则可以将 id
列删除,因为SQLITE会添加此类 ROWID
列,如果未指定其他主键
( https://www.sqlite.org/autoinc.org/autoinc.html )
不幸的是,MySQL没有枢轴,这是给出预期结果所需的第一步,因此您必须使用:
select StudentID,
max(case when ColumnSequence=1 then Major end) Major1,
max(case when ColumnSequence=2 then Major end) Major2
from (
Select StudentID,
Major,
row_number() over(partition by StudentID order by StudentID) ColumnSequence
from tbl ) as t1
group by StudentID
如果您每个studentID有超过两个值,则上述查询将行转换为列(column sequence时,case depteriD添加了两个以上的情况) = 2然后大端)Major3。
然后使用以下查询来查找对不止一次。
注释。我添加了以下值(201,“科学”),(201,“数学”),以不止一次计数。
使用:
SELECT CONCAT(LEAST(Major1, Major2), ',', GREATEST(Major1, Major2)) as pair,
COUNT(*) as unique_pair_repeats
FROM ( select StudentID,
max(case when ColumnSequence=1 then Major end) Major1,
max(case when ColumnSequence=2 then Major end) Major2
from ( Select StudentID,
Major,
row_number() over(partition by StudentID order by StudentID) ColumnSequence
from tbl
) as t1
group by StudentID
) as t2
GROUP BY pair
HAVING count(*) > 1;
尝试安装EMMET语言服务器。
与梅森一起,
:MasonInstall emmet-ls
Astro LSP对我也没有正确的操作。
cdk部署
a> cloudAsseMembly .out 每次部署前。缓存无济于事。
但是,CDK显然缓存zipped式伪像(上传到S3之前),因此从理论上讲,您可以通过caching cdk.out/.cache/.cache
保存 .zip
-ing时间。
@codingmytra tanks tank tock to your评论,我找到了解决方案。
通过添加这些 useRequestInterceptor
和 useresponseinterceptor
选项, accessToken
和 refreshtoken
变量自动自动更新自己。
app.UseSwaggerUI(swaggerUiOptions =>
{
var responseInterceptor = @"(res) =>
{
if(res.obj.accessToken)
{
console.log(res.obj.accessToken);
const token = res.obj.accessToken;
localStorage.setItem('token', token);
};
if(res.obj.refreshToken)
{
console.log(res.obj.refreshToken);
const refresh_token = res.obj.refreshToken;
localStorage.setItem('refresh_token', refresh_token);
};
return res;
}";
var requestInterceptor = @"(req) =>
{
req.headers['Authorization'] = 'Bearer ' + localStorage.getItem('token');
req.headers['RefreshToken'] = localStorage.getItem('refresh_token');
return req;
}";
swaggerUiOptions.UseResponseInterceptor(Regex.Replace(responseInterceptor, @"\s+", " "));
swaggerUiOptions.UseRequestInterceptor(Regex.Replace(requestInterceptor, @"\s+", " "));
});
尝试使用所描述的连接字符串格式在这里。如果您在域上,并且将使用客户端上的登录帐户访问SQL Server,则可以使用受信任的连接,
否则您需要提供凭据。
Try using the connection string format described here. If you are on a domain and will be using the logged-in account on the client to access the SQL server you can use a trusted connection
Otherwise you'll need to provide credentials.
如何在另一台计算机上为Microsoft SQL Server制作连接字符串