温馨耳语

文章 评论 浏览 29

温馨耳语 2025-02-20 19:21:55

有人在评论中已经说过,您需要两个相机的参数。换句话说,您系统的校准信息:

  • 每个相机的内在参数(包括镜头失真参数)
  • 外部参数,即在旋转矩阵和翻译向量方面,一个相对于另一个摄像机。

在那之后,是的,有一个公式。请参阅我的其他答案在这里

如果您想一个示例从差距映射到3D点,则可以在这里并在代码中遵循跟踪。

How someone has already said in the comments, you need the parameters of both cameras. In other words, the calibration information of your system:

  • Intrinsics parameters of each camera (including lens distortion params)
  • Extrinsics parameters i.e. where is one camera with respect to the other one in terms of a rotation matrix and a translation vector.

After that, yes, there is a formula. Please refer to my other answer here.

If you want an example to go from disparity map to 3D points, you can go here and follow the trail in the code.

立体视觉真实距离计算

温馨耳语 2025-02-20 15:57:49

您可以使用以下方式将当前的Google Sheet数据放入数据框架中:

import pygsheets

gc = pygsheets.authorize(service_file=service_file)
sh = gc.open("Sheet1")
wks = sh.sheet1
old_data = pd.DataFrame(wks.get_all_records())

然后可以在数据框架上进行任何检查,然后使用Google Sheet进行更新。

df = new_data # your new dataset (dataframe)

found = old_data[old_data['Item Name'].str.contains('Apple')]
if found.count() > 0: 
   wks.set_dataframe(df, (1, 1))

You can get your current google sheet data into a dataframe using:

import pygsheets

gc = pygsheets.authorize(service_file=service_file)
sh = gc.open("Sheet1")
wks = sh.sheet1
old_data = pd.DataFrame(wks.get_all_records())

Then you can do any checks you want on the dataframe and update the google sheet back using.

df = new_data # your new dataset (dataframe)

found = old_data[old_data['Item Name'].str.contains('Apple')]
if found.count() > 0: 
   wks.set_dataframe(df, (1, 1))

更新到Google表格

温馨耳语 2025-02-20 07:12:57

将课堂名称重命名为其他。

arrayList 是带有 java.util 软件包的类
由于您导入了 java.util。*,因此程序无法从 util 软件包中选择此类或类。

import java.util.*;

public class MyArrayList {

    public static void main(String[] args) {
        List<Integer> List = new ArrayList<>();
        ArrayList<Integer> List = new ArrayList<>();
    }
    
}

Rename class name to something else.

ArrayList is a class that came with java.util package
Since you imported java.util.* , the program can't select this class or the class from util package.

import java.util.*;

public class MyArrayList {

    public static void main(String[] args) {
        List<Integer> List = new ArrayList<>();
        ArrayList<Integer> List = new ArrayList<>();
    }
    
}

为什么在创建我的arraylist时会遇到错误?

温馨耳语 2025-02-20 01:18:15

'表',class _ ='hover'包含表数据aka tbody,tr,td等是动态的,这就是为什么您无法获得 tbody ,但您可以模仿DAT硒与熊猫/BS4。我将硒与熊猫一起使用。

脚本:

import time
import pandas as pd
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager

driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()))
driver.get('https://www.agrolok.pl/notowania/notowania-cen-pszenicy.htm')
driver.maximize_window()
time.sleep(2)

soup = BeautifulSoup(driver.page_source, 'lxml')

df = pd.read_html(str(soup))[0]
d=df.rename(columns=df.iloc[0]).drop(df.index[0])
print(d)

输出:

7/4/2022  1410  1380  343.25  4.7002  1613  1640
1    7/1/2022  1410  1300  334.50  4.7176  1578  1630
2   6/30/2022  1410  1320  350.25  4.6806  1639  1650
3   6/29/2022  1500  1380  358.50  4.6809  1678  1710
4   6/28/2022  1450  1360  356.75  4.7004  1677  1690
5   6/27/2022  1450  1360  350.00  4.6965  1644  1690
6   6/24/2022  1450  1360  357.25  4.7094  1682  1700
7   6/23/2022  1450  1360  359.00  4.7096  1691  1690
8   6/22/2022  1470  1410  370.50  4.6590  1726  1750
9   6/21/2022  1500  1370  372.50  4.6460  1731  1730
10  6/20/2022  1540  1460  388.25  4.6731  1814  1780
11  6/15/2022  1560  1460  392.75  4.6642  1832  1780
12  6/14/2022  1560  1460  392.25  4.6548  1826  1780
13  6/13/2022  1540  1460  394.50  4.6313  1827  1800
14  6/10/2022  1530  1450  391.75  4.6030  1803  1760
15   6/9/2022  1540  1500  386.25  4.5826  1770  1730
16   6/8/2022  1550  1520  381.75  4.5817  1749  1730
17   6/7/2022  1500  1540  385.50  4.5855  1768  1700
18   6/6/2022  1600  1510  397.50  4.5880  1824  1760
19   6/3/2022  1560  1490  378.25  4.5908  1736  1700
20   6/2/2022  1590  1490  382.50  4.5876  1755  1710
21   6/1/2022  1590  1490  380.50  4.5891  1746  1700
22  5/31/2022  1650  1560  392.25  4.5756  1795  1750
23  5/30/2022  1670  1590  406.75  4.5869  1866  1800
24  5/27/2022  1670  1580  414.75  4.6102  1912  1700
25  5/26/2022  1650  1580  409.50  4.6135  1889  1700
26  5/25/2022  1670  1600  404.50  4.5955  1859  1700
27  5/24/2022  1690  1630  410.50  4.6107  1893  1800
28  5/23/2022  1700  1600  426.00  4.6171  1966  1860
29  5/20/2022  1700  1630  420.75  4.6366  1951  1840
30  5/19/2022  1700  1640  422.25  4.6429  1960  1850
31  5/18/2022  1700  1640  430.50  4.6528  2003  1850
32  5/17/2022  1690  1640  438.25  4.6558  2040  1850
33  5/16/2022  1690  1640  438.25  4.6724  2048  1880
34  5/13/2022  1670  1560  416.50  4.6679  1944  1800
35  5/12/2022  1670  1540  414.25  4.6841  1940  1790
36  5/11/2022  1670  1540  403.25  4.6700  1883  1790
37  5/10/2022  1680  1560  396.50  4.6761  1854  1780
38   5/9/2022  1670  1560  394.50  4.7059  1856  1780
39   5/6/2022  1600  1580  406.25  4.6979  1909  1760
40   5/5/2022  1660  1610  401.00  4.6658  1871  1780
41   5/4/2022  1660  1630  390.50  4.6777  1827  1735
42  4/29/2022  1660  1630  400.75  4.6582  1867  1720
43  4/28/2022  1670  1640  416.50  4.6915  1954  1740
44  4/27/2022  1670  1630  418.25  4.7076  1969  1720
45  4/26/2022  1660  1640  415.25  4.6429  1928  1685
46  4/25/2022  1665  1630  408.25  4.6405  1894  1670
47  4/22/2022  1665  1650  407.00  4.6361  1887  1690
48  4/21/2022  1660  1650  405.75  4.6523  1888  1690
49  4/20/2022  1660  1660  398.50  4.6295  1845  1700
50  4/19/2022  1680  1660  399.50  4.6361  1852  1740
51  4/15/2022  1690  1660  401.00  4.6378  1860  1770
52  4/14/2022  1690  1660  401.00  4.6447  1863  1770
53  4/13/2022  1680  1630  403.00  4.6460  1872  1780
54  4/12/2022  1650  1620  399.25  4.6626  1862  1700
55  4/11/2022  1630  1590  379.50  4.6451  1763  1670
56   4/8/2022  1650  1610  372.75  4.6405  1730  1660
57   4/7/2022  1650  1610  363.75  4.6478  1691  1670
58   4/6/2022  1650  1600  364.00  4.6539  1694  1670
59   4/5/2022  1650  1620  364.50  4.6317  1688  1680
60   4/4/2022  1640  1610  363.75  4.6373  1687  1680

'table', class_='hover' that contains table data aka tbody, tr, td and so on are dynamic thats why you are not getting tbody but you can mimic dat selenium with pandas/bs4. I use selenium with pandas.

Script:

import time
import pandas as pd
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager

driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()))
driver.get('https://www.agrolok.pl/notowania/notowania-cen-pszenicy.htm')
driver.maximize_window()
time.sleep(2)

soup = BeautifulSoup(driver.page_source, 'lxml')

df = pd.read_html(str(soup))[0]
d=df.rename(columns=df.iloc[0]).drop(df.index[0])
print(d)

Output:

7/4/2022  1410  1380  343.25  4.7002  1613  1640
1    7/1/2022  1410  1300  334.50  4.7176  1578  1630
2   6/30/2022  1410  1320  350.25  4.6806  1639  1650
3   6/29/2022  1500  1380  358.50  4.6809  1678  1710
4   6/28/2022  1450  1360  356.75  4.7004  1677  1690
5   6/27/2022  1450  1360  350.00  4.6965  1644  1690
6   6/24/2022  1450  1360  357.25  4.7094  1682  1700
7   6/23/2022  1450  1360  359.00  4.7096  1691  1690
8   6/22/2022  1470  1410  370.50  4.6590  1726  1750
9   6/21/2022  1500  1370  372.50  4.6460  1731  1730
10  6/20/2022  1540  1460  388.25  4.6731  1814  1780
11  6/15/2022  1560  1460  392.75  4.6642  1832  1780
12  6/14/2022  1560  1460  392.25  4.6548  1826  1780
13  6/13/2022  1540  1460  394.50  4.6313  1827  1800
14  6/10/2022  1530  1450  391.75  4.6030  1803  1760
15   6/9/2022  1540  1500  386.25  4.5826  1770  1730
16   6/8/2022  1550  1520  381.75  4.5817  1749  1730
17   6/7/2022  1500  1540  385.50  4.5855  1768  1700
18   6/6/2022  1600  1510  397.50  4.5880  1824  1760
19   6/3/2022  1560  1490  378.25  4.5908  1736  1700
20   6/2/2022  1590  1490  382.50  4.5876  1755  1710
21   6/1/2022  1590  1490  380.50  4.5891  1746  1700
22  5/31/2022  1650  1560  392.25  4.5756  1795  1750
23  5/30/2022  1670  1590  406.75  4.5869  1866  1800
24  5/27/2022  1670  1580  414.75  4.6102  1912  1700
25  5/26/2022  1650  1580  409.50  4.6135  1889  1700
26  5/25/2022  1670  1600  404.50  4.5955  1859  1700
27  5/24/2022  1690  1630  410.50  4.6107  1893  1800
28  5/23/2022  1700  1600  426.00  4.6171  1966  1860
29  5/20/2022  1700  1630  420.75  4.6366  1951  1840
30  5/19/2022  1700  1640  422.25  4.6429  1960  1850
31  5/18/2022  1700  1640  430.50  4.6528  2003  1850
32  5/17/2022  1690  1640  438.25  4.6558  2040  1850
33  5/16/2022  1690  1640  438.25  4.6724  2048  1880
34  5/13/2022  1670  1560  416.50  4.6679  1944  1800
35  5/12/2022  1670  1540  414.25  4.6841  1940  1790
36  5/11/2022  1670  1540  403.25  4.6700  1883  1790
37  5/10/2022  1680  1560  396.50  4.6761  1854  1780
38   5/9/2022  1670  1560  394.50  4.7059  1856  1780
39   5/6/2022  1600  1580  406.25  4.6979  1909  1760
40   5/5/2022  1660  1610  401.00  4.6658  1871  1780
41   5/4/2022  1660  1630  390.50  4.6777  1827  1735
42  4/29/2022  1660  1630  400.75  4.6582  1867  1720
43  4/28/2022  1670  1640  416.50  4.6915  1954  1740
44  4/27/2022  1670  1630  418.25  4.7076  1969  1720
45  4/26/2022  1660  1640  415.25  4.6429  1928  1685
46  4/25/2022  1665  1630  408.25  4.6405  1894  1670
47  4/22/2022  1665  1650  407.00  4.6361  1887  1690
48  4/21/2022  1660  1650  405.75  4.6523  1888  1690
49  4/20/2022  1660  1660  398.50  4.6295  1845  1700
50  4/19/2022  1680  1660  399.50  4.6361  1852  1740
51  4/15/2022  1690  1660  401.00  4.6378  1860  1770
52  4/14/2022  1690  1660  401.00  4.6447  1863  1770
53  4/13/2022  1680  1630  403.00  4.6460  1872  1780
54  4/12/2022  1650  1620  399.25  4.6626  1862  1700
55  4/11/2022  1630  1590  379.50  4.6451  1763  1670
56   4/8/2022  1650  1610  372.75  4.6405  1730  1660
57   4/7/2022  1650  1610  363.75  4.6478  1691  1670
58   4/6/2022  1650  1600  364.00  4.6539  1694  1670
59   4/5/2022  1650  1620  364.50  4.6317  1688  1680
60   4/4/2022  1640  1610  363.75  4.6373  1687  1680

如何使用Python获取桌子的身体?

温馨耳语 2025-02-19 18:30:34

为了确切的时机,您基本上必须忙于等待: time.elapsed()&lt;间隔{} 。这也称为“旋转”(您可能已经听说过“旋转锁”)。当然,这比使用OS提供的睡眠功能(通常以某种低功率模式过渡CPU)要大得多。

要稍微改善这一点,您可以在循环主体中绝对什么都不做,而是可以:

不幸的是,我真的不能告诉您这两个功能为您提供了什么时间。但是从文档看来, spin_loop 将导致更精确的时机。

另外,您很可能希望将“旋转等待”与 std :: thread :: Sleep 相结合,以便大部分时间都使用后一种方法睡觉。这样可以节省大量的功率/CPU资源。嘿,甚至还有一个板条箱: spin_sleep 。您可能应该只使用它。

最后,以防万一您不知道:对于这些“时间”的几种用例,您可以使用其他功能。例如,如果您想每60秒渲染一个框架,则需要使用一些API,可以直接与监视器的刷新速率/v-Blanking同步,而不是手动睡觉。

For precise timing, you basically have to busy wait: while time.elapsed() < interval {}. This is also called "spinning" (you might have heard of "spin lock"). Of course, this is far more CPU intensive than using the OS-provided sleep functionality (which often transitions the CPU in some low power mode).

To improve upon that slightly, instead of doing absolutely nothing in the loop body, you could:

Unfortunately, I can't really tell you what timing guarantees these two functions give you. But from the documentation it seems like spin_loop will result in more precise timing.

Also, you very likely want to combine the "spin waiting" with std::thread::sleep so that you sleep the majority of the time with the latter method. That saves a lot of power/CPU-resources. And hey, there is even a crate for exactly that: spin_sleep. You should probably just use that.

Finally, just in case you are not aware: for several use cases of these "timings", there are other functions you can use. For example, if you want to render a frame every 60th of a second, you want to use some API that synchronizes your loop with the refresh rate/v-blanking of the monitor directly, instead of manually sleeping.

在准确,精确的间隔上定期执行功能

温馨耳语 2025-02-19 17:27:48

同时,使用非生成参数API并通过dbnull.value。

Supporting null with the generic parameter API is tracked in https://github.com/npgsql/npgsql/issues/3679.

In the meantime, use the non-generic parameter API and pass DBNull.Value.

如何使用C#客户端和通用参数API将NULL插入带有时区列的时间戳中的时间戳中

温馨耳语 2025-02-18 14:52:14

您可以简单地尝试尝试捕获异常
martin-prikryl ,例如:

try:
    client.connect(host="192.168.0.8",
                   username="user1",
                   password="password1234"
                   )
except AuthenticationException:
    print("Authentication failed, please verify your credentials: %s")
except SSHException as sshException:
    print("Unable to establish SSH connection: %s" % sshException)

对于SSH例外的其他示例,您可以查看 https://www.programcreek.com/python/example/example/7495/paramiko.sshexception

You could simply use a try and catch the exception as mentioned by
martin-prikryl, such as:

try:
    client.connect(host="192.168.0.8",
                   username="user1",
                   password="password1234"
                   )
except AuthenticationException:
    print("Authentication failed, please verify your credentials: %s")
except SSHException as sshException:
    print("Unable to establish SSH connection: %s" % sshException)

For other examples of ssh exceptions you can look at https://www.programcreek.com/python/example/7495/paramiko.SSHException

处理缺失的SSH连接

温馨耳语 2025-02-18 07:59:28

并不容易。有一些特殊的LP求解器可以做到这一点(请参阅:Ralph E. Steuer,多个标准优化:理论,计算和应用,Wiley,1986),但目前可用的LP Solvers不能。

有一种使用二进制变量编码基础的方法:

 b[i] = 1 if variable x[i] = basic
        0                    nonbasic

使用此方法,我们可以使用“不剪切”或“解决方案池”技术来获取K最佳基础。请参阅:。请注意,并非所有的解决方案池都能做到k-最佳。 (Cplex不能,Gurobi可以。)“无件”剪切可与任何MIP求解器一起使用。


更新:最新的参考是Craig A. Piercy,Ralph E. Steuer,
减少多个客观线性编程中所有有效极端点计算的壁锁时间,欧洲运营研究杂志,2019年, https://doi.org/10.1016/j.ejor.2019.02.042

Not so easy. There were some special LP solvers that could do that (see: Ralph E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, 1986), but currently available LP solvers can't.

There is a way to encode a basis using binary variables:

 b[i] = 1 if variable x[i] = basic
        0                    nonbasic

Using this, we can use "no good cuts" or "solution pool" technology to get the k best bases. See: https://yetanothermathprogrammingconsultant.blogspot.com/2016/01/finding-all-optimal-lp-solutions.html. Note that not all solution-pools can do the k-best. (Cplex can't, Gurobi can.) The "no-good" cuts work with any mip solver.


Update: a more recent reference is Craig A. Piercy, Ralph E. Steuer,
Reducing wall-clock time for the computation of all efficient extreme points in multiple objective linear programming, European Journal of Operational Research, 2019, https://doi.org/10.1016/j.ejor.2019.02.042

我如何根据其成本订购最小成本流问题的基本解决方案?

温馨耳语 2025-02-18 04:15:50

您可以先修剪电子邮件,然后可以检查验证。

 validator: (email) {
            if(email != null) {
                email = email.trim();
      (!EmailValidator.validate(email))
            ? 'Enter a valid Email' : null,
             }  
         return null;  

 }

You can trim email first then you can check for validation.

 validator: (email) {
            if(email != null) {
                email = email.trim();
      (!EmailValidator.validate(email))
            ? 'Enter a valid Email' : null,
             }  
         return null;  

 }

允许在电子邮件验证器中的空间中的空间

温馨耳语 2025-02-17 20:57:36

我认为这是使用JSON Stringify进行操作的最简单方法,它可能是某些情况下最好的解决方案:

JSON.stringify(a1) === JSON.stringify(a2);

这将对象 a1 a2 转换为字符串可以比较。在大多数情况下,该顺序很重要,因为它可以使用上述答案之一中显示的排序算法对对象进行排序。

请注意,您不再比较对象,而是比较对象的字符串表示。这可能不是您想要的。

This I think is the simplest way to do it using JSON stringify, and it may be the best solution in some situations:

JSON.stringify(a1) === JSON.stringify(a2);

This converts the objects a1 and a2 into strings so they can be compared. The order is important in most cases, for that can sort the object using a sort algorithm shown in one of the above answers.

Please do note that you are no longer comparing the object but the string representation of the object. It may not be exactly what you want.

如何在JavaScript中比较数组?

温馨耳语 2025-02-16 21:28:41

我找到了答案。我的帖子用户模型模型是一个数组,所以我不得不使用$ pull将其删除。
这是对我有用的代码

        await post.user.posts.pull(post)
        await post.user.save()

I found out the answer. My user model schema for post was an array so I had to use $pull to delete it.
This is the code that worked for me

        await post.user.posts.pull(post)
        await post.user.save()

mongoose/mongodb获取.deleteone不是一个功能

温馨耳语 2025-02-16 17:24:05

谢谢,我设法以您的片段的灵感来完成。

SELECT s.you_send,c1.currency, s.you_get, c2.currency
FROM swaps s
JOIN currencies c1 ON c1.id = s.currency_from
JOIN currencies c2 ON c2.id = s.currency_to

    


Thanks I managed to do it with the inspiration of your snippet.

SELECT s.you_send,c1.currency, s.you_get, c2.currency
FROM swaps s
JOIN currencies c1 ON c1.id = s.currency_from
JOIN currencies c2 ON c2.id = s.currency_to

    


SQL选择同一行数次,但具有不同的查询

温馨耳语 2025-02-16 08:24:55

当然,
使用CSS+媒体查询,您可以重新使用所有表/tr/tr/th/td元素。

如果您想要一个简短的例子。
只需尝试将此风格应用于您的网站

<style type="text/css">
    @media screen and (max-width: 800px) {
       tr {
          display: flex;
          flex-wrap: wrap;
       }
    }
</style>

并减少窗口,
您会发现所有行都会变得灵活

sure,
With css+media queries you can re-style all the table/tr/th/td elements.

if you want a short example.
just try to apply this style to your website

<style type="text/css">
    @media screen and (max-width: 800px) {
       tr {
          display: flex;
          flex-wrap: wrap;
       }
    }
</style>

And reducing the windows,
you'll see that all rows will become flexible

是否有一种简单的方法来制作一个可靠的旧网页,该网页具有硬编码值并使用了很多表格进行格式化,对媒体查询进行响应?

温馨耳语 2025-02-15 23:22:26
  • @user1672994建议使用新的队列启动管弦乐器函数,您可以使用 azure core 用于清除编排实例状态的工具。

  • 首先安装azure core工具您的特定Azure功能版本,下面是用于安装Azure Core Tools

    的NPM软件包管理器

npm install -g azure-functions-core-tools@3
  • 需要您的功能 host.json
func durable 
  • >文件在root目录中打开命令
func durable purge-history
  • As suggested by @user1672994 to start orchestrator function with a fresh queue you can use Azure Core tools for purging the orchestration instance state.

  • Install the Azure core tools first in your particular Azure function version, below is the NPM package manager for installing Azure Core tools

npm install -g azure-functions-core-tools@3
  • As azure core tools require your function host.json file open the command prompt in root directory to identify your orchestration functions.
func durable 
  • Below is the command for purging instance history
func durable purge-history

每次调试启动时,耐用功能的编排功能会自动触发

温馨耳语 2025-02-15 11:20:15

目标列不在索引中,或者执行计划未能利用此类索引。

我同意Smor的观点,因为您需要获取,审查(并在此处发布)实际执行计划。

另请参见计划是MS SQL Server Management Studio

The target column is not in the index OR execution plan fails to utilize such index.

I agree with SMor in that you need to obtain, review (and post here) the actual execution plan.

See also how to display execution plan is MS SQL Server Management Studio

SQL Server视图中的排序列会导致不同的性能

更多

推荐作者

櫻之舞

文章 0 评论 0

弥枳

文章 0 评论 0

m2429

文章 0 评论 0

野却迷人

文章 0 评论 0

我怀念的。

文章 0 评论 0

更多

友情链接

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文