__future__ — Future statement definitions - Python 3.11.1 documentation 编辑

Source code: Lib/__future__.py


__future__ is a real module, and serves three purposes:

  • To avoid confusing existing tools that analyze import statements and expect to find the modules they’re importing.

  • To ensure that future statements run under releases prior to 2.1 at least yield runtime exceptions (the import of __future__ will fail, because there was no module of that name prior to 2.1).

  • To document when incompatible changes were introduced, and when they will be — or were — made mandatory. This is a form of executable documentation, and can be inspected programmatically via importing __future__ and examining its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
                       CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
 PY_MINOR_VERSION, # the 1; an int
 PY_MICRO_VERSION, # the 0; an int
 PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
 PY_RELEASE_SERIAL # the 3; an int
)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function compile() to enable the feature in dynamically compiled code. This flag is stored in the compiler_flag attribute on _Feature instances.

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following features have found their way into the language using this mechanism:

feature

optional in

mandatory in

effect

nested_scopes

2.1.0b1

2.2

PEP 227: Statically Nested Scopes

generators

2.2.0a1

2.3

PEP 255: Simple Generators

division

2.2.0a2

3.0

PEP 238: Changing the Division Operator

absolute_import

2.5.0a1

3.0

PEP 328: Imports: Multi-Line and Absolute/Relative

with_statement

2.5.0a1

2.6

PEP 343: The “with” Statement

print_function

2.6.0a2

3.0

PEP 3105: Make print a function

unicode_literals

2.6.0a2

3.0

PEP 3112: Bytes literals in Python 3000

generator_stop

3.5.0b1

3.7

PEP 479: StopIteration handling inside generators

annotations

3.7.0b1

TBD 1

PEP 563: Postponed evaluation of annotations

1

from __future__ import annotations was previously scheduled to become mandatory in Python 3.10, but the Python Steering Council twice decided to delay the change (announcement for Python 3.10; announcement for Python 3.11). No final decision has been made yet. See also PEP 563 and PEP 649.

See also

Future statements

How the compiler treats future imports.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

词条统计

浏览:4 次

字数:5900

最后编辑:7年前

编辑次数:0 次

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文