Math.hypot() - JavaScript 编辑
The Math.hypot()
function returns the square root of the sum of squares of its arguments, that is:
The source for this interactive example is stored in a GitHub repository. If you'd like to contribute to the interactive examples project, please clone https://github.com/mdn/interactive-examples and send us a pull request.
The source for this interactive example is stored in a GitHub repository. If you'd like to contribute to the interactive examples project, please clone https://github.com/mdn/interactive-examples and send us a pull request.Syntax
Math.hypot([value1[, value2[, ...]]])
Parameters
value1, value2, ...
- Numbers.
Return value
The square root of the sum of squares of the given arguments. If at least one of the arguments cannot be converted to a number, NaN
is returned.
Description
Calculating the hypotenuse of a right triangle, or the magnitude of a complex number, uses the formula Math.sqrt(v1*v1 + v2*v2)
, where v1 and v2 are the lengths of the triangle's legs, or the complex number's real and complex components. The corresponding distance in 2 or more dimensions can be calculated by adding more squares under the square root: Math.sqrt(v1*v1 + v2*v2 + v3*v3 + v4*v4)
.
This function makes this calculation easier and faster; you call Math.hypot(v1, v2)
, or Math.hypot(v1, v2, v3, v4, ...)
.
Math.hypot
also avoids overflow/underflow problems if the magnitude of your numbers is very large. The largest number you can represent in JS is Number.MAX_VALUE
, which is around 10308. If your numbers are larger than about 10154, taking the square of them will result in Infinity. For example, Math.sqrt(1e200*1e200 + 1e200*1e200) = Infinity
. If you use hypot()
instead, you get better answer: Math.hypot(1e200, 1e200) = 1.4142...e+200
. This is also true with very small numbers. Math.sqrt(1e-200*1e-200 + 1e-200*1e-200) = 0
, but Math.hypot(1e-200, 1e-200) = 1.4142...e-200
.
Because hypot()
is a static method of Math
, you always use it as Math.hypot()
, rather than as a method of a Math
object you created (Math
is not a constructor).
If no arguments are given, the result is +0. If any of the arguments is ±Infinity, the result is Infinity. If any of the arguments is NaN (unless another argument is ±Infinity), the result is NaN. If at least one of the arguments cannot be converted to a number, the result is NaN
.
With one argument, Math.hypot()
is equivalent to Math.abs()
.
Examples
Using Math.hypot()
Math.hypot(3, 4); // 5
Math.hypot(3, 4, 5); // 7.0710678118654755
Math.hypot(); // 0
Math.hypot(NaN); // NaN
Math.hypot(NaN, Infinity); // Infinity
Math.hypot(3, 4, 'foo'); // NaN, since +'foo' => NaN
Math.hypot(3, 4, '5'); // 7.0710678118654755, +'5' => 5
Math.hypot(-3); // 3, the same as Math.abs(-3)
Polyfill
A naive approach that does not handle overflow/underflow issues:
if (!Math.hypot) Math.hypot = function() {
var y = 0, i = arguments.length, containsInfinity = false;
while (i--) {
var arg = arguments[i];
if (arg === Infinity || arg === -Infinity)
containsInfinity = true
y += arg * arg
}
return containsInfinity ? Infinity : Math.sqrt(y)
}
A polyfill that avoids underflows and overflows:
if (!Math.hypot) Math.hypot = function () {
var max = 0;
var s = 0;
var containsInfinity = false;
for (var i = 0; i < arguments.length; ++i) {
var arg = Math.abs(Number(arguments[i]));
if (arg === Infinity)
containsInfinity = true
if (arg > max) {
s *= (max / arg) * (max / arg);
max = arg;
}
s += arg === 0 && max === 0 ? 0 : (arg / max) * (arg / max);
}
return containsInfinity ? Infinity : (max === 1 / 0 ? 1 / 0 : max * Math.sqrt(s));
};
Specifications
Specification |
---|
ECMAScript (ECMA-262) The definition of 'Math.hypot' in that specification. |
Browser compatibility
BCD tables only load in the browser
See also
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论