机器学习训练秘籍 PDF 文档

发布于 2024-05-27 22:56:55 字数 1618 浏览 21 评论 0

机器学习习((machine learning))已然成为无数重要应用的基石——如今,在网络搜索、垃圾邮件检测、语音识别以及产品推荐等领域,你都能够发现它的身影。如果你或你的团队正在研发一款机器学习相关应用,并期待取得较快进展,那么这本书将会是你的得力助手。

目录
1 机器学习为什么需要策略?
2 如何使用此书来帮助你的团队
3 先修知识与符号说明
4 规模驱动机器学习发展
5 开发集和测试集的定义
6 开发集和测试集应该服从同一分布
7 开发集和测试集应该有多大??
8 使用单值评估指标进行优化
9 优化指标和满意度指标
10 通过开发集和度量指标加速迭代
11 何时修改开发集、测试集和指标
12 小结:建立开发集和测试集
13 快速构建并迭代你的第一个系统
14 误差分析:根据开发集样本评估想法
15 在误差分析时并行评估多个想法
16 清洗误标注的开发集和测试集样本
17 将大型开发集拆分为两个子集,专注其一
18 Eyeball 和 Blackbox 开发集该设置多大?
19 小结:基础误差分析
20 偏差和方差:误差的两大来源
21 偏差和方差举例
22 与最优错误率比较
23 处理偏差和方差
24 偏差和方差间的权衡
25 减少可避免偏差的技术
26 训练集误差分析
27 减少方差的技术
28 诊断偏差与方差:学习曲线
29 绘制训练误差曲线
30 解读学习曲线:高偏差
31 解读学习曲线:其它情况
32 绘制学习曲线
33 为何与人类表现水平进行对比
34 如何定义人类表现水平
35 超越人类表现水平
36 何时在不同的分布上训练与测试
37 如何决定是否使用你所有的数据
38 如何决定是否添加不一致的数据
39 给数据添加权重
40 从训练集泛化到开发集
41 辨别偏差、方差和数据不匹配误差
42 解决数据不匹配问题
43 人工合成数据
44 优化验证测试
45 优化验证测试的一般形式
46 强化学习举例
47 端到端学习的兴起
48 端到端学习的更多例子
49 端到端学习的优缺点
50 流水线组件的选择:数据可用性
51 流水线组件的选择:任务简单性
52 直接学习更为丰富的输出
53 根据组件进行误差分析
54 误差归因至某个组件
55 误差归因的一般情况
56 组件误差分析与人类水平对比
57 发现有缺陷的机器学习流水线
58 建立超级英雄团队 - 让你的队友阅读这本书吧!

下载地址:https://www.wenjiangs.com/wp-content/uploads/2024/02/MLY-zh-cn.zip

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

关于作者

JSmiles

生命进入颠沛而奔忙的本质状态,并将以不断告别和相遇的陈旧方式继续下去。

0 文章
0 评论
84960 人气
更多

推荐作者

末蓝

文章 0 评论 0

年少掌心

文章 0 评论 0

党海生

文章 0 评论 0

飞翔的企鹅

文章 0 评论 0

鹿港小镇

文章 0 评论 0

wookoon

文章 0 评论 0

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文