周志华 - 机器学习 PDF 文档

发布于 2024-05-27 08:29:20 字数 2496 浏览 28 评论 0

这是一本面向中文读者的机器学习教科书,为了使尽可能多的读者通过本书对机器学习有所了解,作者试图尽可能少地使用数学知识,然而,少量的概率、统计、代数、优化、逻辑知识似乎不可避免。因此本书更适合大学三年级以上的理工科本科生和研究生,以及具有类似背景的对机器学习感兴趣的人士。为方便读者,本书附录给出了一些相关数学基础知识简介。

第 1 章 绪论
1.1 引言
1.2 基本术语
1.3 假设空间
1.4 归纳偏好
1.5 发展历程
1.6 应用现状
1.7 阅读材料
第 2 章 模型评估与选择
2.1 经验误差与过拟合
2.2 评估方法
2.3 性能度量
2.4 比较检验
2.5 偏差与方差
2.6 阅读材料
第 3 章 线性模型
3.1 基本形式
3.2 线性回归
3.3 对数几率回归
3.4 线性判别分析
3.5 多分类学习
3.6 类别不平衡问题
3.7 阅读材料
第 4 章 决策树
4.1 基本流程
4.2 划分选择
4.3 剪枝处理
4.4 连续与缺失值
4.5 多变量决策树
4.6 阅读材料
第 5 章 神经网络
5.1 神经元模型
5.2 感知机与多层网络
5.3 误差逆传播算法
5.4 全局最小与局部极小
5.5 其他常见神经网络
5.6 深度学习
5.7 阅读材料
第 6 章 支持向量机
6.1 间隔与支持向量
6.2 对偶问题
6.3 核函数
6.4 软间隔与正则化
6.5 支持向量回归
6.6 核方法
6.7 阅读材料
第 7 章 贝叶斯分类
7.1 贝叶斯决策论
7.2 极大似然估计
7.3 朴素贝叶斯分类器
7.4 半朴素贝叶斯分类器
7.5 贝叶斯网
7.6 EM 算法
7.7 阅读材料
第 8 章 集成学习
8.1 个体与集成
8.2 Boosting
8.3 Bagging 与随机森林
8.4 结合策略
8.5 多样性
8.6 阅读材料
第 9 章 聚类
9.1 聚类任务
9.2 性能度量
9.3 距离计算
9.4 原型聚类
9.5 密度聚类
9.6 层次聚类
9.7 阅读材料
第 10 章 降维与度量学习
10.1 k 近邻学习
10.2 低维嵌入
10.3 主成分分析
10.4 核化线性降维
10.5 流形学习
10.6 度量学习
10.7 阅读材料
第 11 章 特征选择与稀疏学习
11.1 子集搜索与评价
11.2 过滤式选择
11.3 包裹式选择
11.4 嵌入式选择与 L1 正则化
11.5 稀疏表示与字典学习
11.6 压缩感知
11.7 阅读材料
第 12 章 计算学习理论
12.1 基础知识
12.2 PAC 学习
12.3 有限假设空间
12.4 VC 维
12.5 Rademacher 复杂度
12.6 稳定性
12.7 阅读材料
第 13 章 半监督学习
13.1 未标记样本
13.2 生成式方法
13.3 半监督 SVM
13.4 图半监督学习
13.5 基于分歧的方法
13.6 半监督聚类
13.7 阅读材料
第 14 章 概率图模型
14.1 隐马尔可夫模型
14.2 马尔可夫随机场
14.3 条件随机场
14.4 学习与推断
14.5 近似推断
14.6 话题模型
14.7 阅读材料
第 15 章 规则学习
15.1 基本概念
15.2 序贯覆盖
15.3 剪枝优化
15.4 一阶规则学习
15.5 归纳逻辑程序设计
15.6 阅读材料
第 16 章 强化学习
16.1 任务与奖赏
16.2 K-摇臂赌博机
16.3 有模型学习
16.4 免模型学习
16.5 值函数近似
16.6 模仿学习
16.7 阅读材料
附录
A 矩阵
B 优化
C 概率分布
后记
索引

下载地址:https://www.wenjiangs.com/wp-content/uploads/2024/02/4XnFTiJ9DVzZkbVT.zip

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

关于作者

JSmiles

生命进入颠沛而奔忙的本质状态,并将以不断告别和相遇的陈旧方式继续下去。

0 文章
0 评论
84961 人气
更多

推荐作者

daid

文章 0 评论 0

我心依旧

文章 0 评论 0

晒暮凉

文章 0 评论 0

微信用户

文章 0 评论 0

DS

文章 0 评论 0

〆凄凉。

文章 0 评论 0

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文