Python 机器学习基础教程 PDF 文档
本书是机器学习入门书,以 Python 语言介绍。主要内容包括 :机器学习的基本概念及其应用 ;实践中最常用的机器学习算法以及这些算法的优缺点 ;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面 ;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索 ;管道的概念 ;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。
本书适合机器学习从业者或有志成为机器学习从业者的人阅读。
本书是为机器学习从业者或有志成为机器学习从业者的人准备的,他们在为现实生活中的机器学习问题寻找解决方案。这是一本入门书,不需要读者具备机器学习或人工智能(artificial intelligence,AI)的相关知识。我们主要使用 Python 和 scikit-learn 库,一步一步构建一个有效的机器学习应用。我们介绍的方法适用于科学家和研究人员,也会对开发商业应用的数据科学家有所帮助。如果你对 Python 以及 NumPy 和 matplotlib 库有所了解的话,将能够更好地掌握本书的内容。
前言
第 1 章 引言
1.1 为何选择机器学习
1.1.1 机器学习能够解决的问题
1.1.2 熟悉任务和数据
1.2 为何选择 Python
1.3 scikit-learn
安装 scikit-learn
1.4 必要的库和工具
1.4.1 Jupyter Notebook
1.4.2 NumPy
1.4.3 SciPy
1.4.4 matplotlib
1.4.5 pandas
1.4.6 mglearn
1.5 Python 2 与 Python 3 的对比
1.6 本书用到的版本
1.7 第一个应用:鸢尾花分类
1.7.1 初识数据
1.7.2 衡量模型是否成功:训练数据与测试数据
1.7.3 要事第一:观察数据
1.7.4 构建第一个模型:k 近邻算法
1.7.5 做出预测
1.7.6 评估模型
1.8 小结与展望
第 2 章 监督学习
2.1 分类与回归
2.2 泛化、过拟合与欠拟合
模型复杂度与数据集大小的关系
2.3 监督学习算法
2.3.1 一些样本数据集
2.3.2 k 近邻
2.3.3 线性模型
2.3.4 朴素贝叶斯分类器
2.3.5 决策树
2.3.6 决策树集成
2.3.7 核支持向量机
2.3.8 神经网络(深度学习)
2.4 分类器的不确定度估计
2.4.1 决策函数
2.4.2 预测概率
2.4.3 多分类问题的不确定度
2.5 小结与展望
第 3 章 无监督学习与预处理
3.1 无监督学习的类型
3.2 无监督学习的挑战
3.3 预处理与缩放
3.3.1 不同类型的预处理
3.3.2 应用数据变换
3.3.3 对训练数据和测试数据进行相同的缩放
3.3.4 预处理对监督学习的作用
3.4 降维、特征提取与流形学习
3.4.1 主成分分析
3.4.2 非负矩阵分解
3.4.3 用 t-SNE 进行流形学习
3.5 聚类
3.5.1 k 均值聚类
3.5.2 凝聚聚类
3.5.3 DBSCAN
3.5.4 聚类算法的对比与评估
3.5.5 聚类方法小结
3.6 小结与展望
第 4 章 数据表示与特征工程
4.1 分类变量
4.1.1 One-Hot 编码(虚拟变量)
4.1.2 数字可以编码分类变量
4.2 分箱、离散化、线性模型与树
4.3 交互特征与多项式特征
4.4 单变量非线性变换
4.5 自动化特征选择
4.5.1 单变量统计
4.5.2 基于模型的特征选择
4.5.3 迭代特征选择
4.6 利用专家知识
4.7 小结与展望
第 5 章 模型评估与改进
5.1 交叉验证
5.1.1 scikit-learn 中的交叉验证
5.1.2 交叉验证的优点
5.1.3 分层 k 折交叉验证和其他策略
5.2 网格搜索
5.2.1 简单网格搜索
5.2.2 参数过拟合的风险与验证集
5.2.3 带交叉验证的网格搜索
5.3 评估指标与评分
5.3.1 牢记最终目标
5.3.2 二分类指标
5.3.3 多分类指标
5.3.4 回归指标
5.3.5 在模型选择中使用评估指标
5.4 小结与展望
第 6 章 算法链与管道
6.1 用预处理进行参数选择
6.2 构建管道
6.3 在网格搜索中使用管道
6.4 通用的管道接口
6.4.1 用 make_pipeline 方便地创建管道
6.4.2 访问步骤属性
6.4.3 访问网格搜索管道中的属性
6.5 网格搜索预处理步骤与模型参数
6.6 网格搜索选择使用哪个模型
6.7 小结与展望
第 7 章 处理文本数据
7.1 用字符串表示的数据类型
7.2 示例应用:电影评论的情感分析
7.3 将文本数据表示为词袋
7.3.1 将词袋应用于玩具数据集
7.3.2 将词袋应用于电影评论
7.4 停用词
7.5 用 tf-idf 缩放数据
7.6 研究模型系数
7.7 多个单词的词袋(n 元分词)
7.8 高级分词、词干提取与词形还原
7.9 主题建模与文档聚类
隐含狄利克雷分布
7.10 小结与展望
第 8 章 全书总结
8.1 处理机器学习问题
参与决策过程的人
8.2 从原型到生产
8.3 测试生产系统
8.4 构建你自己的估计器
8.5 下一步怎么走
8.5.1 理论
8.5.2 其他机器学习框架和包
8.5.3 排序、推荐系统与其他学习类型
8.5.4 概率建模、推断与概率编程
8.5.5 神经网络
8.5.6 推广到更大的数据集
8.5.7 磨练你的技术
8.6 总结
关于作者
关于封面
连接图灵
看完了
下载地址:https://www.wenjiangs.com/wp-content/uploads/2024/01/NdPLoU5gQ8bxZpD6.zip
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论