@abtnode/nedb 中文文档教程
The JavaScript Database
Node.js 的嵌入式持久性或内存数据库。 js、nw.js、Electron 和浏览器,100% JavaScript,无二进制依赖。 API 是 MongoDB 的一个子集,它非常快。
重要提示:请不要提交与您的代码有关的问题。 只会回答实际的错误或功能请求,所有其他问题将在不发表评论的情况下关闭。 此外,请遵循错误报告指南并检查在提交已修复的错误之前更改日志 :)
Support NeDB development
没时间帮忙? 您可以通过汇款或比特币来支持 NeDB 的发展!
比特币地址:1dDZLnWpBbodPiN8sizzYrgaz5iahFyb1
Installation, tests
模块npm 和 bower 上的名称是 nedb
。
npm install @abtnode/nedb --save # Put latest version in your package.json
npm test # You'll need the dev dependencies to launch tests
API
它是 MongoDB API(最常用的操作)的一个子集。
- Creating/loading a database
- Persistence
- Inserting documents
- Finding documents
- Basic Querying
- Operators ($lt, $lte, $gt, $gte, $in, $nin, $ne, $exists, \$regex)
- Array fields
- Logical operators $or, $and, $not, $where
- Sorting and paginating
- Projections
- Counting documents
- Updating documents
- Removing documents
- Indexing
- Browser version
Creating/loading a database
您可以将 NeDB 用作仅内存中的数据存储或用作持久性数据存储。 一个数据存储相当于一个 MongoDB 集合。 构造函数按如下方式使用 new Datastore(options)
其中 options
是具有以下字段的对象:
filename
(optional): path to the file where the data is persisted. If left blank, the datastore is automatically considered in-memory only. It cannot end with a~
which is used in the temporary files NeDB uses to perform crash-safe writes.inMemoryOnly
(optional, defaults tofalse
): as the name implies.timestampData
(optional, defaults tofalse
): timestamp the insertion and last update of all documents, with the fieldscreatedAt
andupdatedAt
. User-specified values override automatic generation, usually useful for testing.autoload
(optional, defaults tofalse
): if used, the database will automatically be loaded from the datafile upon creation (you don't need to callloadDatabase
). Any command issued before load is finished is buffered and will be executed when load is done.onload
(optional): if you use autoloading, this is the handler called after theloadDatabase
. It takes oneerror
argument. If you use autoloading without specifying this handler, and an error happens during load, an error will be thrown.afterSerialization
(optional): hook you can use to transform data after it was serialized and before it is written to disk. Can be used for example to encrypt data before writing database to disk. This function takes a string as parameter (one line of an NeDB data file) and outputs the transformed string, which must absolutely not contain a\n
character (or data will be lost).beforeDeserialization
(optional): inverse ofafterSerialization
. Make sure to include both and not just one or you risk data loss. For the same reason, make sure both functions are inverses of one another. Some failsafe mechanisms are in place to prevent data loss if you misuse the serialization hooks: NeDB checks that never one is declared without the other, and checks that they are reverse of one another by testing on random strings of various lengths. In addition, if too much data is detected as corrupt, NeDB will refuse to start as it could mean you're not using the deserialization hook corresponding to the serialization hook used before (see below).corruptAlertThreshold
(optional): between 0 and 1, defaults to 10%. NeDB will refuse to start if more than this percentage of the datafile is corrupt. 0 means you don't tolerate any corruption, 1 means you don't care.compareStrings
(optional): function compareStrings(a, b) compares strings a and b and return -1, 0 or 1. If specified, it overrides default string comparison which is not well adapted to non-US characters in particular accented letters. NativelocalCompare
will most of the time be the right choicenodeWebkitAppName
(optional, DEPRECATED): if you are using NeDB from whithin a Node Webkit app, specify its name (the same one you use in thepackage.json
) in this field and thefilename
will be relative to the directory Node Webkit uses to store the rest of the application's data (local storage etc.). It works on Linux, OS X and Windows. Now that you can userequire('nw.gui').App.dataPath
in Node Webkit to get the path to the data directory for your application, you should not use this option anymore and it will be removed.
如果您使用没有 autoload
选项,您需要手动调用 loadDatabase
。 此函数从数据文件中获取数据并准备数据库。 别忘了!如果您使用 持久数据存储,在 loadDatabase
之前不会执行任何命令(插入、查找、更新、删除) 被调用,因此请确保自己调用它或使用 autoload
选项。
此外,如果 loadDatabase
失败,则之后注册到执行程序的所有命令都不会执行。 只有在 loadDatabase
成功之后,它们才会按顺序被注册和执行。
// Type 1: In-memory only datastore (no need to load the database)
var Datastore = require('@abtnode/nedb'),
db = new Datastore();
// Type 2: Persistent datastore with manual loading
var Datastore = require('@abtnode/nedb'),
db = new Datastore({ filename: 'path/to/datafile' });
db.loadDatabase(function (err) {
// Callback is optional
// Now commands will be executed
});
// Type 3: Persistent datastore with automatic loading
var Datastore = require('@abtnode/nedb'),
db = new Datastore({ filename: 'path/to/datafile', autoload: true });
// You can issue commands right away
// Type 4: Persistent datastore for a Node Webkit app called 'nwtest'
// For example on Linux, the datafile will be ~/.config/nwtest/nedb-data/something.db
var Datastore = require('@abtnode/nedb'),
path = require('path'),
db = new Datastore({ filename: path.join(require('nw.gui').App.dataPath, 'something.db') });
// Of course you can create multiple datastores if you need several
// collections. In this case it's usually a good idea to use autoload for all collections.
db = {};
db.users = new Datastore('path/to/users.db');
db.robots = new Datastore('path/to/robots.db');
// You need to load each database (here we do it asynchronously)
db.users.loadDatabase();
db.robots.loadDatabase();
Persistence
在幕后,NeDB 的持久性使用仅附加格式,这意味着出于性能原因,所有更新和删除实际上都会导致在数据文件末尾添加行。 每次您在应用程序中加载每个数据库时,数据库都会自动压缩(即恢复为每文档一行)。
您可以使用不带参数的 yourDatabase.persistence.compactDatafile
手动调用压缩函数。 它将执行器中的数据文件压缩排队,在所有未决操作之后按顺序执行。 压缩完成后,数据存储将触发 compaction.done
事件。
您还可以使用 yourDatabase.persistence.setAutocompactionInterval(interval)
设置自动压缩,interval
以毫秒为单位(强制至少 5s),并停止自动压缩你的数据库.persistence.stopAutocompaction()
。
请记住,压缩需要一点时间(不是太多:在典型的开发机器上 50k 记录需要 130 毫秒)并且在压缩时不会发生其他操作,因此大多数项目实际上不需要使用它。
假设数据库中所有损坏文档的总百分比仍然低于指定的 corruptAlertThreshold
选项值,Compaction 也会立即删除任何数据行已损坏的文档。
持久性与主要数据库的工作方式类似:压缩强制操作系统将数据物理刷新到磁盘,而附加到数据文件则不会(操作系统负责刷新数据)。 这保证了服务器崩溃永远不会导致数据完全丢失,同时保持性能。 可能发生的最坏情况是两次同步之间的崩溃,导致两次同步之间的所有数据丢失。 通常同步间隔为 30 秒,因此最多 30 秒的数据。 Antirez 关于 Redis 持久性的这篇文章 对此进行了更详细的解释,NeDB 正在非常接近于 appendfsync
选项设置为 no
的 Redis AOF 持久性。
Inserting documents
本机类型是 String
、Number
、Boolean
、Date
和 null
。 您也可以使用 数组和子文档(对象)。 如果一个字段是undefined
,它不会被保存(这不同于 MongoDB 将 undefined
转换为 null
,我觉得这有悖常理)。
如果文档不包含 _id
字段,NeDB 会自动为您生成一个(16 个字符的字母数字字符串)。 文档的 _id
一旦设置,就无法修改。
字段名称不能以“\$”开头或包含“.”。
var doc = {
hello: 'world',
n: 5,
today: new Date(),
nedbIsAwesome: true,
notthere: null,
notToBeSaved: undefined, // Will not be saved
fruits: ['apple', 'orange', 'pear'],
infos: { name: 'nedb' },
};
db.insert(doc, function (err, newDoc) {
// Callback is optional
// newDoc is the newly inserted document, including its _id
// newDoc has no key called notToBeSaved since its value was undefined
});
您还可以批量插入文档数组。 此操作是原子的,这意味着如果由于违反唯一约束而导致一次插入失败,则所有更改都将回滚。
db.insert([{ a: 5 }, { a: 42 }], function (err, newDocs) {
// Two documents were inserted in the database
// newDocs is an array with these documents, augmented with their _id
});
// If there is a unique constraint on field 'a', this will fail
db.insert([{ a: 5 }, { a: 42 }, { a: 5 }], function (err) {
// err is a 'uniqueViolated' error
// The database was not modified
});
Finding documents
使用 find
查找与您查询匹配的多个文档,或使用 findOne
查找一个特定文档。 您可以根据字段相等性或使用比较运算符($lt
、$lte
、$gt
、$gte
选择文档代码>、<代码>$in、<代码>$nin、<代码>$ne)。 您还可以使用逻辑运算符 $or
、$and
、$not
和 $where
。 请参阅下面的语法。
您可以通过两种方式使用正则表达式:在基本查询中代替字符串,或使用 $regex
运算符。
您可以使用游标 API(见下文)对结果进行排序和分页。
您可以使用标准投影来限制字段出现在结果中(见下文)。
Basic querying
基本查询手段是查找其字段与您指定的字段匹配的文档。 您可以使用正则表达式来匹配字符串。 您可以使用点表示法在嵌套文档、数组、子文档数组中导航,并匹配数组的特定元素。
// Let's say our datastore contains the following collection
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false, satellites: ['Phobos', 'Deimos'] }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true, humans: { genders: 2, eyes: true } }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persei 8', system: 'futurama', inhabited: true, humans: { genders: 7 } }
// { _id: 'id5', completeData: { planets: [ { name: 'Earth', number: 3 }, { name: 'Mars', number: 2 }, { name: 'Pluton', number: 9 } ] } }
// Finding all planets in the solar system
db.find({ system: 'solar' }, function (err, docs) {
// docs is an array containing documents Mars, Earth, Jupiter
// If no document is found, docs is equal to []
});
// Finding all planets whose name contain the substring 'ar' using a regular expression
db.find({ planet: /ar/ }, function (err, docs) {
// docs contains Mars and Earth
});
// Finding all inhabited planets in the solar system
db.find({ system: 'solar', inhabited: true }, function (err, docs) {
// docs is an array containing document Earth only
});
// Use the dot-notation to match fields in subdocuments
db.find({ 'humans.genders': 2 }, function (err, docs) {
// docs contains Earth
});
// Use the dot-notation to navigate arrays of subdocuments
db.find({ 'completeData.planets.name': 'Mars' }, function (err, docs) {
// docs contains document 5
});
db.find({ 'completeData.planets.name': 'Jupiter' }, function (err, docs) {
// docs is empty
});
db.find({ 'completeData.planets.0.name': 'Earth' }, function (err, docs) {
// docs contains document 5
// If we had tested against "Mars" docs would be empty because we are matching against a specific array element
});
// You can also deep-compare objects. Don't confuse this with dot-notation!
db.find({ humans: { genders: 2 } }, function (err, docs) {
// docs is empty, because { genders: 2 } is not equal to { genders: 2, eyes: true }
});
// Find all documents in the collection
db.find({}, function (err, docs) {});
// The same rules apply when you want to only find one document
db.findOne({ _id: 'id1' }, function (err, doc) {
// doc is the document Mars
// If no document is found, doc is null
});
Operators ($lt, $lte, $gt, $gte, $in, $nin, $ne, $exists, \$regex)
语法是 { field: { $op: value } }
其中 $op
是任何比较运算符:
$lt
,$lte
: less than, less than or equal$gt
,$gte
: greater than, greater than or equal$in
: member of.value
must be an array of values$ne
,$nin
: not equal, not a member of$exists
: checks whether the document posses the propertyfield
.value
should be true or false$regex
: checks whether a string is matched by the regular expression. Contrary to MongoDB, the use of$options
with$regex
is not supported, because it doesn't give you more power than regex flags. Basic queries are more readable so only use the$regex
operator when you need to use another operator with it (see example below)
// $lt, $lte, $gt and $gte work on numbers and strings
db.find({ 'humans.genders': { $gt: 5 } }, function (err, docs) {
// docs contains Omicron Persei 8, whose humans have more than 5 genders (7).
});
// When used with strings, lexicographical order is used
db.find({ planet: { $gt: 'Mercury' } }, function (err, docs) {
// docs contains Omicron Persei 8
});
// Using $in. $nin is used in the same way
db.find({ planet: { $in: ['Earth', 'Jupiter'] } }, function (err, docs) {
// docs contains Earth and Jupiter
});
// Using $exists
db.find({ satellites: { $exists: true } }, function (err, docs) {
// docs contains only Mars
});
// Using $regex with another operator
db.find({ planet: { $regex: /ar/, $nin: ['Jupiter', 'Earth'] } }, function (err, docs) {
// docs only contains Mars because Earth was excluded from the match by $nin
});
Array fields
当文档中的字段是数组时,NeDB 首先尝试查看如果查询值是一个数组来进行精确匹配,那么是否有一个数组特定的比较函数(目前只有$size
和$elemMatch
)用过的。 如果不是,则查询被视为对每个元素的查询,如果至少有一个元素匹配,则存在匹配。
$size
: match on the size of the array$elemMatch
: matches if at least one array element matches the query entirely
// Exact match
db.find({ satellites: ['Phobos', 'Deimos'] }, function (err, docs) {
// docs contains Mars
});
db.find({ satellites: ['Deimos', 'Phobos'] }, function (err, docs) {
// docs is empty
});
// Using an array-specific comparison function
// $elemMatch operator will provide match for a document, if an element from the array field satisfies all the conditions specified with the `$elemMatch` operator
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: 3 } } } }, function (err, docs) {
// docs contains documents with id 5 (completeData)
});
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: 5 } } } }, function (err, docs) {
// docs is empty
});
// You can use inside #elemMatch query any known document query operator
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: { $gt: 2 } } } } }, function (err, docs) {
// docs contains documents with id 5 (completeData)
});
// Note: you can't use nested comparison functions, e.g. { $size: { $lt: 5 } } will throw an error
db.find({ satellites: { $size: 2 } }, function (err, docs) {
// docs contains Mars
});
db.find({ satellites: { $size: 1 } }, function (err, docs) {
// docs is empty
});
// If a document's field is an array, matching it means matching any element of the array
db.find({ satellites: 'Phobos' }, function (err, docs) {
// docs contains Mars. Result would have been the same if query had been { satellites: 'Deimos' }
});
// This also works for queries that use comparison operators
db.find({ satellites: { $lt: 'Amos' } }, function (err, docs) {
// docs is empty since Phobos and Deimos are after Amos in lexicographical order
});
// This also works with the $in and $nin operator
db.find({ satellites: { $in: ['Moon', 'Deimos'] } }, function (err, docs) {
// docs contains Mars (the Earth document is not complete!)
});
Logical operators $or, $and, $not, $where
您可以使用逻辑运算符组合查询:
- For
$or
and$and
, the syntax is{ $op: [query1, query2, ...] }
. - For
$not
, the syntax is{ $not: query }
- For
$where
, the syntax is{ $where: function () { /* object is "this", return a boolean */ } }
db.find({ $or: [{ planet: 'Earth' }, { planet: 'Mars' }] }, function (err, docs) {
// docs contains Earth and Mars
});
db.find({ $not: { planet: 'Earth' } }, function (err, docs) {
// docs contains Mars, Jupiter, Omicron Persei 8
});
db.find(
{
$where: function () {
return Object.keys(this) > 6;
},
},
function (err, docs) {
// docs with more than 6 properties
}
);
// You can mix normal queries, comparison queries and logical operators
db.find({ $or: [{ planet: 'Earth' }, { planet: 'Mars' }], inhabited: true }, function (err, docs) {
// docs contains Earth
});
Sorting and paginating
如果您没有指定回调到 find
、findOne
或 count
,Cursor< /code> 对象被返回。 您可以使用
sort
、skip
和limit
修改游标,然后使用exec(callback)
执行它。
// Let's say the database contains these 4 documents
// doc1 = { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false, satellites: ['Phobos', 'Deimos'] }
// doc2 = { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true, humans: { genders: 2, eyes: true } }
// doc3 = { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// doc4 = { _id: 'id4', planet: 'Omicron Persei 8', system: 'futurama', inhabited: true, humans: { genders: 7 } }
// No query used means all results are returned (before the Cursor modifiers)
db.find({}).sort({ planet: 1 }).skip(1).limit(2).exec(function (err, docs) {
// docs is [doc3, doc1]
});
// You can sort in reverse order like this
db.find({ system: 'solar' }).sort({ planet: -1 }).exec(function (err, docs) {
// docs is [doc1, doc3, doc2]
});
// You can sort on one field, then another, and so on like this:
db.find({}).sort({ firstField: 1, secondField: -1 }) ... // You understand how this works!
Projections
您可以为 find
和 findOne
提供可选的第二个参数,projections
。 语法与 MongoDB 相同:{ a: 1, b: 1 }
仅返回 a
和 b
字段,{ a: 0, b: 0 }
省略这两个字段。 你不能同时使用这两种模式,除了 _id
默认情况下总是返回并且你可以选择忽略它。 您可以在嵌套文档上投影。
// Same database as above
// Keeping only the given fields
db.find({ planet: 'Mars' }, { planet: 1, system: 1 }, function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar', _id: 'id1' }]
});
// Keeping only the given fields but removing _id
db.find({ planet: 'Mars' }, { planet: 1, system: 1, _id: 0 }, function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar' }]
});
// Omitting only the given fields and removing _id
db.find({ planet: 'Mars' }, { planet: 0, system: 0, _id: 0 }, function (err, docs) {
// docs is [{ inhabited: false, satellites: ['Phobos', 'Deimos'] }]
});
// Failure: using both modes at the same time
db.find({ planet: 'Mars' }, { planet: 0, system: 1 }, function (err, docs) {
// err is the error message, docs is undefined
});
// You can also use it in a Cursor way but this syntax is not compatible with MongoDB
db.find({ planet: 'Mars' })
.projection({ planet: 1, system: 1 })
.exec(function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar', _id: 'id1' }]
});
// Project on a nested document
db.findOne({ planet: 'Earth' })
.projection({ planet: 1, 'humans.genders': 1 })
.exec(function (err, doc) {
// doc is { planet: 'Earth', _id: 'id2', humans: { genders: 2 } }
});
Counting documents
您可以使用 count
来计算文档数量。 它的语法与 find
相同。 例如:
// Count all planets in the solar system
db.count({ system: 'solar' }, function (err, count) {
// count equals to 3
});
// Count all documents in the datastore
db.count({}, function (err, count) {
// count equals to 4
});
Updating documents
db.update(query, update, options, callback)
会根据update
规则更新所有匹配query
的文档:
query
is the same kind of finding query you use withfind
andfindOne
update
specifies how the documents should be modified. It is either a new document or a set of modifiers (you cannot use both together, it doesn't make sense!)- A new document will replace the matched docs
- The modifiers create the fields they need to modify if they don't exist, and you can apply them to subdocs. Available field modifiers are
$set
to change a field's value,$unset
to delete a field,$inc
to increment a field's value and$min
/$max
to change field's value, only if provided value is less/greater than current value. To work on arrays, you have$push
,$pop
,$addToSet
,$pull
, and the special$each
and$slice
. See examples below for the syntax. options
is an object with two possible parametersmulti
(defaults tofalse
) which allows the modification of several documents if set to trueupsert
(defaults tofalse
) if you want to insert a new document corresponding to theupdate
rules if yourquery
doesn't match anything. If yourupdate
is a simple object with no modifiers, it is the inserted document. In the other case, thequery
is stripped from all operator recursively, and theupdate
is applied to it.returnUpdatedDocs
(defaults tofalse
, not MongoDB-compatible) if set to true and update is not an upsert, will return the array of documents matched by the find query and updated. Updated documents will be returned even if the update did not actually modify them.callback
(optional) signature:(err, numAffected, affectedDocuments, upsert)
. Warning: the API was changed between v1.7.4 and v1.8. Please refer to the change log to see the change.- For an upsert,
affectedDocuments
contains the inserted document and theupsert
flag is set totrue
. - For a standard update with
returnUpdatedDocs
flag set tofalse
,affectedDocuments
is not set. - For a standard update with
returnUpdatedDocs
flag set totrue
andmulti
tofalse
,affectedDocuments
is the updated document. - For a standard update with
returnUpdatedDocs
flag set totrue
andmulti
totrue
,affectedDocuments
is the array of updated documents.
注意:您无法更改文档的_id。
// Let's use the same example collection as in the "finding document" part
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persia 8', system: 'futurama', inhabited: true }
// Replace a document by another
db.update({ planet: 'Jupiter' }, { planet: 'Pluton'}, {}, function (err, numReplaced) {
// numReplaced = 1
// The doc #3 has been replaced by { _id: 'id3', planet: 'Pluton' }
// Note that the _id is kept unchanged, and the document has been replaced
// (the 'system' and inhabited fields are not here anymore)
});
// Set an existing field's value
db.update({ system: 'solar' }, { $set: { system: 'solar system' } }, { multi: true }, function (err, numReplaced) {
// numReplaced = 3
// Field 'system' on Mars, Earth, Jupiter now has value 'solar system'
});
// Setting the value of a non-existing field in a subdocument by using the dot-notation
db.update({ planet: 'Mars' }, { $set: { "data.satellites": 2, "data.red": true } }, {}, function () {
// Mars document now is { _id: 'id1', system: 'solar', inhabited: false
// , data: { satellites: 2, red: true }
// }
// Not that to set fields in subdocuments, you HAVE to use dot-notation
// Using object-notation will just replace the top-level field
db.update({ planet: 'Mars' }, { $set: { data: { satellites: 3 } } }, {}, function () {
// Mars document now is { _id: 'id1', system: 'solar', inhabited: false
// , data: { satellites: 3 }
// }
// You lost the "data.red" field which is probably not the intended behavior
});
});
// Deleting a field
db.update({ planet: 'Mars' }, { $unset: { planet: true } }, {}, function () {
// Now the document for Mars doesn't contain the planet field
// You can unset nested fields with the dot notation of course
});
// Upserting a document
db.update({ planet: 'Pluton' }, { planet: 'Pluton', inhabited: false }, { upsert: true }, function (err, numReplaced, upsert) {
// numReplaced = 1, upsert = { _id: 'id5', planet: 'Pluton', inhabited: false }
// A new document { _id: 'id5', planet: 'Pluton', inhabited: false } has been added to the collection
});
// If you upsert with a modifier, the upserted doc is the query modified by the modifier
// This is simpler than it sounds :)
db.update({ planet: 'Pluton' }, { $inc: { distance: 38 } }, { upsert: true }, function () {
// A new document { _id: 'id5', planet: 'Pluton', distance: 38 } has been added to the collection
});
// If we insert a new document { _id: 'id6', fruits: ['apple', 'orange', 'pear'] } in the collection,
// let's see how we can modify the array field atomically
// $push inserts new elements at the end of the array
db.update({ _id: 'id6' }, { $push: { fruits: 'banana' } }, {}, function () {
// Now the fruits array is ['apple', 'orange', 'pear', 'banana']
});
// $pop removes an element from the end (if used with 1) or the front (if used with -1) of the array
db.update({ _id: 'id6' }, { $pop: { fruits: 1 } }, {}, function () {
// Now the fruits array is ['apple', 'orange']
// With { $pop: { fruits: -1 } }, it would have been ['orange', 'pear']
});
// $addToSet adds an element to an array only if it isn't already in it
// Equality is deep-checked (i.e. $addToSet will not insert an object in an array already containing the same object)
// Note that it doesn't check whether the array contained duplicates before or not
db.update({ _id: 'id6' }, { $addToSet: { fruits: 'apple' } }, {}, function () {
// The fruits array didn't change
// If we had used a fruit not in the array, e.g. 'banana', it would have been added to the array
});
// $pull removes all values matching a value or even any NeDB query from the array
db.update({ _id: 'id6' }, { $pull: { fruits: 'apple' } }, {}, function () {
// Now the fruits array is ['orange', 'pear']
});
db.update({ _id: 'id6' }, { $pull: { fruits: $in: ['apple', 'pear'] } }, {}, function () {
// Now the fruits array is ['orange']
});
// $each can be used to $push or $addToSet multiple values at once
// This example works the same way with $addToSet
db.update({ _id: 'id6' }, { $push: { fruits: { $each: ['banana', 'orange'] } } }, {}, function () {
// Now the fruits array is ['apple', 'orange', 'pear', 'banana', 'orange']
});
// $slice can be used in cunjunction with $push and $each to limit the size of the resulting array.
// A value of 0 will update the array to an empty array. A positive value n will keep only the n first elements
// A negative value -n will keep only the last n elements.
// If $slice is specified but not $each, $each is set to []
db.update({ _id: 'id6' }, { $push: { fruits: { $each: ['banana'], $slice: 2 } } }, {}, function () {
// Now the fruits array is ['apple', 'orange']
});
// $min/$max to update only if provided value is less/greater than current value
// Let's say the database contains this document
// doc = { _id: 'id', name: 'Name', value: 5 }
db.update({ _id: 'id1' }, { $min: { value: 2 } }, {}, function () {
// The document will be updated to { _id: 'id', name: 'Name', value: 2 }
});
db.update({ _id: 'id1' }, { $min: { value: 8 } }, {}, function () {
// The document will not be modified
});
Removing documents
db.remove(query, options, callback)
将根据 options
删除所有匹配 query
的
query
is the same as the ones used for finding and updatingoptions
only one option for now:multi
which allows the removal of multiple documents if set to true. Default is falsecallback
is optional, signature: err, numRemoved
// Let's use the same example collection as in the "finding document" part
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persia 8', system: 'futurama', inhabited: true }
// Remove one document from the collection
// options set to {} since the default for multi is false
db.remove({ _id: 'id2' }, {}, function (err, numRemoved) {
// numRemoved = 1
});
// Remove multiple documents
db.remove({ system: 'solar' }, { multi: true }, function (err, numRemoved) {
// numRemoved = 3
// All planets from the solar system were removed
});
// Removing all documents with the 'match-all' query
db.remove({}, { multi: true }, function (err, numRemoved) {});
Indexing
文档 NeDB 支持索引。 它提供了非常好的速度提升,可用于在字段上强制执行唯一约束。 您可以索引任何字段,包括使用点表示法的嵌套文档中的字段。 目前,索引仅用于加速基本查询和使用 $in
、$lt
、$lte
、$gt 的查询
和 $gte
。 索引值不能是对象数组类型。
要创建索引,请使用 datastore.ensureIndex(options, cb)
,其中回调是可选的,如果有错误(通常是违反的唯一约束),则传递错误。 ensureIndex
可以在您需要时调用,即使在插入一些数据之后也是如此,但最好在应用程序启动时调用它。 选项有:
- fieldName (required): name of the field to index. Use the dot notation to index a field in a nested document.
- unique (optional, defaults to
false
): enforce field uniqueness. Note that a unique index will raise an error if you try to index two documents for which the field is not defined. - sparse (optional, defaults to
false
): don't index documents for which the field is not defined. Use this option along with "unique" if you want to accept multiple documents for which it is not defined. - expireAfterSeconds (number of seconds, optional): if set, the created index is a TTL (time to live) index, that will automatically remove documents when the system date becomes larger than the date on the indexed field plus
expireAfterSeconds
. Documents where the indexed field is not specified or not aDate
object are ignored
注意:_id
会自动使用唯一约束进行索引,无需对其调用 ensureIndex
。
您可以使用 datastore.removeIndex(fieldName, cb)
删除之前创建的索引。
如果您的数据存储是持久的,您创建的索引将保存在数据文件中,当您第二次加载数据库时,它们会自动为您创建。 但是,无需删除任何 ensureIndex
,如果在已经具有索引的数据库上调用它,则不会发生任何事情。
db.ensureIndex({ fieldName: 'somefield' }, function (err) {
// If there was an error, err is not null
});
// Using a unique constraint with the index
db.ensureIndex({ fieldName: 'somefield', unique: true }, function (err) {});
// Using a sparse unique index
db.ensureIndex({ fieldName: 'somefield', unique: true, sparse: true }, function (err) {});
// Format of the error message when the unique constraint is not met
db.insert({ somefield: 'nedb' }, function (err) {
// err is null
db.insert({ somefield: 'nedb' }, function (err) {
// err is { errorType: 'uniqueViolated'
// , key: 'name'
// , message: 'Unique constraint violated for key name' }
});
});
// Remove index on field somefield
db.removeIndex('somefield', function (err) {});
// Example of using expireAfterSeconds to remove documents 1 hour
// after their creation (db's timestampData option is true here)
db.ensureIndex({ fieldName: 'createdAt', expireAfterSeconds: 3600 }, function (err) {});
// You can also use the option to set an expiration date like so
db.ensureIndex({ fieldName: 'expirationDate', expireAfterSeconds: 0 }, function (err) {
// Now all documents will expire when system time reaches the date in their
// expirationDate field
});
注意 ensureIndex
函数同步创建索引,因此最好在应用程序启动时使用它。 它非常快,因此不会增加太多启动时间(包含 10,000 个文档的集合为 35 毫秒)。
Browser version
浏览器版本及其缩小版本位于 browser-version/out
目录中。 您只需要在您的 HTML 文件中引入 nedb.js
或 nedb.min.js
即可立即使用全局对象 Nedb
,使用与服务器版本相同的 API:
<script src="nedb.min.js"></script>
<script>
var db = new Nedb(); // Create an in-memory only datastore
db.insert({ planet: 'Earth' }, function (err) {
db.find({}, function (err, docs) {
// docs contains the two planets Earth and Mars
});
});
</script>
如果指定 filename
,数据库将持久化,并根据浏览器自动选择可用的最佳存储方法(IndexedDB、WebSQL 或 localStorage)。 在大多数情况下,这意味着可以存储大量数据,通常为数百 MB。 警告:存储系统在 v1.3 和 v1.4 之间发生了变化,并且不向后兼容! 当您升级 NeDB 时,您的应用程序需要重新同步客户端。
NeDB 兼容所有主流浏览器:Chrome、Safari、Firefox、IE9+。 测试位于 browser-version/test
目录(文件 index.html
和 testPersistence.html
)。
如果你 fork 和修改 nedb,你可以从源代码构建浏览器版本,构建脚本是 browser-version/build.js
。
Performance
Speed
NeDB 无意取代 MongoDB 等大型数据库,因此其设计目的不是为了提高速度。 也就是说,它在预期的数据集上仍然非常快,特别是如果您使用索引。 在一个典型的、不太快的开发机器上,对于包含 10,000 个文档的集合,具有索引:
- Insert: 10,680 ops/s
- Find: 43,290 ops/s
- Update: 8,000 ops/s
- Remove: 11,750 ops/s
您可以通过执行 benchmarks
文件夹中的脚本来运行这些简单的基准测试。 使用 --help
标志运行它们以查看它们是如何工作的。
Memory footprint
整个数据库的副本保存在内存中。 这个就不多说了 预期的数据集类型(10,000 个 2KB 文档为 20MB)。
Use in other services
- connect-nedb-session is a session store for Connect and Express, backed by nedb
- If you mostly use NeDB for logging purposes and don't want the memory footprint of your application to grow too large, you can use NeDB Logger to insert documents in a NeDB-readable database
- If you've outgrown NeDB, switching to MongoDB won't be too hard as it is the same API. Use this utility to transfer the data from a NeDB database to a MongoDB collection
- An ODM for NeDB: Camo
Pull requests
如果您提交请求请求,谢谢! 有一些规则要遵循,但要使其易于管理:
- The pull request should be atomic, i.e. contain only one feature. If it contains more, please submit multiple pull requests. Reviewing massive, 1000 loc+ pull requests is extremely hard.
- Likewise, if for one unique feature the pull request grows too large (more than 200 loc tests not included), please get in touch first.
- Please stick to the current coding style. It's important that the code uses a coherent style for readability.
- Do not include sylistic improvements ("housekeeping"). If you think one part deserves lots of housekeeping, use a separate pull request so as not to pollute the code.
- Don't forget tests for your new feature. Also don't forget to run the whole test suite before submitting to make sure you didn't introduce regressions.
- Do not build the browser version in your branch, I'll take care of it once the code is merged.
- Update the readme accordingly.
- Last but not least: keep in mind what NeDB's mindset is! The goal is not to be a replacement for MongoDB, but to have a pure JS database, easy to use, cross platform, fast and expressive enough for the target projects (small and self contained apps on server/desktop/browser/mobile). Sometimes it's better to shoot for simplicity than for API completeness with regards to MongoDB.
Bug reporting guidelines
如果您报告错误,谢谢! 也就是说,为了使流程易于管理,请严格遵守以下准则。 我将无法处理那些没有的错误报告:
- Your bug report should be a self-containing gist complete with a package.json for any dependencies you need. I need to run through a simple
git clone gist; npm install; node bugreport.js
, nothing more. - It should use assertions to showcase the expected vs actual behavior and be hysteresis-proof. It's quite simple in fact, see this example: https://gist.github.com/louischatriot/220cf6bd29c7de06a486
- Simplify as much as you can. Strip all your application-specific code. Most of the time you will see that there is no bug but an error in your code :)
- 50 lines max. If you need more, read the above point and rework your bug report. If you're really convinced you need more, please explain precisely in the issue.
- The code should be Javascript, not Coffeescript.
Bitcoins
你没有时间? 您可以通过向此地址发送比特币来支持 NeDB:1dDZLnWpBbodPiN8sizzYrgaz5iahFyb1
License
请参阅许可证
The JavaScript Database
Embedded persistent or in memory database for Node.js, nw.js, Electron and browsers, 100% JavaScript, no binary dependency. API is a subset of MongoDB's and it's plenty fast.
IMPORTANT NOTE: Please don't submit issues for questions regarding your code. Only actual bugs or feature requests will be answered, all others will be closed without comment. Also, please follow the bug reporting guidelines and check the change log before submitting an already fixed bug :)
Support NeDB development
No time to help out? You can support NeDB development by sending money or bitcoins!
Bitcoin address: 1dDZLnWpBbodPiN8sizzYrgaz5iahFyb1
Installation, tests
Module name on npm and bower is nedb
.
npm install @abtnode/nedb --save # Put latest version in your package.json
npm test # You'll need the dev dependencies to launch tests
API
It is a subset of MongoDB's API (the most used operations).
- Creating/loading a database
- Persistence
- Inserting documents
- Finding documents
- Basic Querying
- Operators ($lt, $lte, $gt, $gte, $in, $nin, $ne, $exists, \$regex)
- Array fields
- Logical operators $or, $and, $not, $where
- Sorting and paginating
- Projections
- Counting documents
- Updating documents
- Removing documents
- Indexing
- Browser version
Creating/loading a database
You can use NeDB as an in-memory only datastore or as a persistent datastore. One datastore is the equivalent of a MongoDB collection. The constructor is used as follows new Datastore(options)
where options
is an object with the following fields:
filename
(optional): path to the file where the data is persisted. If left blank, the datastore is automatically considered in-memory only. It cannot end with a~
which is used in the temporary files NeDB uses to perform crash-safe writes.inMemoryOnly
(optional, defaults tofalse
): as the name implies.timestampData
(optional, defaults tofalse
): timestamp the insertion and last update of all documents, with the fieldscreatedAt
andupdatedAt
. User-specified values override automatic generation, usually useful for testing.autoload
(optional, defaults tofalse
): if used, the database will automatically be loaded from the datafile upon creation (you don't need to callloadDatabase
). Any command issued before load is finished is buffered and will be executed when load is done.onload
(optional): if you use autoloading, this is the handler called after theloadDatabase
. It takes oneerror
argument. If you use autoloading without specifying this handler, and an error happens during load, an error will be thrown.afterSerialization
(optional): hook you can use to transform data after it was serialized and before it is written to disk. Can be used for example to encrypt data before writing database to disk. This function takes a string as parameter (one line of an NeDB data file) and outputs the transformed string, which must absolutely not contain a\n
character (or data will be lost).beforeDeserialization
(optional): inverse ofafterSerialization
. Make sure to include both and not just one or you risk data loss. For the same reason, make sure both functions are inverses of one another. Some failsafe mechanisms are in place to prevent data loss if you misuse the serialization hooks: NeDB checks that never one is declared without the other, and checks that they are reverse of one another by testing on random strings of various lengths. In addition, if too much data is detected as corrupt, NeDB will refuse to start as it could mean you're not using the deserialization hook corresponding to the serialization hook used before (see below).corruptAlertThreshold
(optional): between 0 and 1, defaults to 10%. NeDB will refuse to start if more than this percentage of the datafile is corrupt. 0 means you don't tolerate any corruption, 1 means you don't care.compareStrings
(optional): function compareStrings(a, b) compares strings a and b and return -1, 0 or 1. If specified, it overrides default string comparison which is not well adapted to non-US characters in particular accented letters. NativelocalCompare
will most of the time be the right choicenodeWebkitAppName
(optional, DEPRECATED): if you are using NeDB from whithin a Node Webkit app, specify its name (the same one you use in thepackage.json
) in this field and thefilename
will be relative to the directory Node Webkit uses to store the rest of the application's data (local storage etc.). It works on Linux, OS X and Windows. Now that you can userequire('nw.gui').App.dataPath
in Node Webkit to get the path to the data directory for your application, you should not use this option anymore and it will be removed.
If you use a persistent datastore without the autoload
option, you need to call loadDatabase
manually. This function fetches the data from datafile and prepares the database. Don't forget it! If you use a persistent datastore, no command (insert, find, update, remove) will be executed before loadDatabase
is called, so make sure to call it yourself or use the autoload
option.
Also, if loadDatabase
fails, all commands registered to the executor afterwards will not be executed. They will be registered and executed, in sequence, only after a successful loadDatabase
.
// Type 1: In-memory only datastore (no need to load the database)
var Datastore = require('@abtnode/nedb'),
db = new Datastore();
// Type 2: Persistent datastore with manual loading
var Datastore = require('@abtnode/nedb'),
db = new Datastore({ filename: 'path/to/datafile' });
db.loadDatabase(function (err) {
// Callback is optional
// Now commands will be executed
});
// Type 3: Persistent datastore with automatic loading
var Datastore = require('@abtnode/nedb'),
db = new Datastore({ filename: 'path/to/datafile', autoload: true });
// You can issue commands right away
// Type 4: Persistent datastore for a Node Webkit app called 'nwtest'
// For example on Linux, the datafile will be ~/.config/nwtest/nedb-data/something.db
var Datastore = require('@abtnode/nedb'),
path = require('path'),
db = new Datastore({ filename: path.join(require('nw.gui').App.dataPath, 'something.db') });
// Of course you can create multiple datastores if you need several
// collections. In this case it's usually a good idea to use autoload for all collections.
db = {};
db.users = new Datastore('path/to/users.db');
db.robots = new Datastore('path/to/robots.db');
// You need to load each database (here we do it asynchronously)
db.users.loadDatabase();
db.robots.loadDatabase();
Persistence
Under the hood, NeDB's persistence uses an append-only format, meaning that all updates and deletes actually result in lines added at the end of the datafile, for performance reasons. The database is automatically compacted (i.e. put back in the one-line-per-document format) every time you load each database within your application.
You can manually call the compaction function with yourDatabase.persistence.compactDatafile
which takes no argument. It queues a compaction of the datafile in the executor, to be executed sequentially after all pending operations. The datastore will fire a compaction.done
event once compaction is finished.
You can also set automatic compaction at regular intervals with yourDatabase.persistence.setAutocompactionInterval(interval)
, interval
in milliseconds (a minimum of 5s is enforced), and stop automatic compaction with yourDatabase.persistence.stopAutocompaction()
.
Keep in mind that compaction takes a bit of time (not too much: 130ms for 50k records on a typical development machine) and no other operation can happen when it does, so most projects actually don't need to use it.
Compaction will also immediately remove any documents whose data line has become corrupted, assuming that the total percentage of all corrupted documents in that database still falls below the specified corruptAlertThreshold
option's value.
Durability works similarly to major databases: compaction forces the OS to physically flush data to disk, while appends to the data file do not (the OS is responsible for flushing the data). That guarantees that a server crash can never cause complete data loss, while preserving performance. The worst that can happen is a crash between two syncs, causing a loss of all data between the two syncs. Usually syncs are 30 seconds appart so that's at most 30 seconds of data. This post by Antirez on Redis persistence explains this in more details, NeDB being very close to Redis AOF persistence with appendfsync
option set to no
.
Inserting documents
The native types are String
, Number
, Boolean
, Date
and null
. You can also use arrays and subdocuments (objects). If a field is undefined
, it will not be saved (this is different from MongoDB which transforms undefined
in null
, something I find counter-intuitive).
If the document does not contain an _id
field, NeDB will automatically generated one for you (a 16-characters alphanumerical string). The _id
of a document, once set, cannot be modified.
Field names cannot begin by '\$' or contain a '.'.
var doc = {
hello: 'world',
n: 5,
today: new Date(),
nedbIsAwesome: true,
notthere: null,
notToBeSaved: undefined, // Will not be saved
fruits: ['apple', 'orange', 'pear'],
infos: { name: 'nedb' },
};
db.insert(doc, function (err, newDoc) {
// Callback is optional
// newDoc is the newly inserted document, including its _id
// newDoc has no key called notToBeSaved since its value was undefined
});
You can also bulk-insert an array of documents. This operation is atomic, meaning that if one insert fails due to a unique constraint being violated, all changes are rolled back.
db.insert([{ a: 5 }, { a: 42 }], function (err, newDocs) {
// Two documents were inserted in the database
// newDocs is an array with these documents, augmented with their _id
});
// If there is a unique constraint on field 'a', this will fail
db.insert([{ a: 5 }, { a: 42 }, { a: 5 }], function (err) {
// err is a 'uniqueViolated' error
// The database was not modified
});
Finding documents
Use find
to look for multiple documents matching you query, or findOne
to look for one specific document. You can select documents based on field equality or use comparison operators ($lt
, $lte
, $gt
, $gte
, $in
, $nin
, $ne
). You can also use logical operators $or
, $and
, $not
and $where
. See below for the syntax.
You can use regular expressions in two ways: in basic querying in place of a string, or with the $regex
operator.
You can sort and paginate results using the cursor API (see below).
You can use standard projections to restrict the fields to appear in the results (see below).
Basic querying
Basic querying means are looking for documents whose fields match the ones you specify. You can use regular expression to match strings. You can use the dot notation to navigate inside nested documents, arrays, arrays of subdocuments and to match a specific element of an array.
// Let's say our datastore contains the following collection
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false, satellites: ['Phobos', 'Deimos'] }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true, humans: { genders: 2, eyes: true } }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persei 8', system: 'futurama', inhabited: true, humans: { genders: 7 } }
// { _id: 'id5', completeData: { planets: [ { name: 'Earth', number: 3 }, { name: 'Mars', number: 2 }, { name: 'Pluton', number: 9 } ] } }
// Finding all planets in the solar system
db.find({ system: 'solar' }, function (err, docs) {
// docs is an array containing documents Mars, Earth, Jupiter
// If no document is found, docs is equal to []
});
// Finding all planets whose name contain the substring 'ar' using a regular expression
db.find({ planet: /ar/ }, function (err, docs) {
// docs contains Mars and Earth
});
// Finding all inhabited planets in the solar system
db.find({ system: 'solar', inhabited: true }, function (err, docs) {
// docs is an array containing document Earth only
});
// Use the dot-notation to match fields in subdocuments
db.find({ 'humans.genders': 2 }, function (err, docs) {
// docs contains Earth
});
// Use the dot-notation to navigate arrays of subdocuments
db.find({ 'completeData.planets.name': 'Mars' }, function (err, docs) {
// docs contains document 5
});
db.find({ 'completeData.planets.name': 'Jupiter' }, function (err, docs) {
// docs is empty
});
db.find({ 'completeData.planets.0.name': 'Earth' }, function (err, docs) {
// docs contains document 5
// If we had tested against "Mars" docs would be empty because we are matching against a specific array element
});
// You can also deep-compare objects. Don't confuse this with dot-notation!
db.find({ humans: { genders: 2 } }, function (err, docs) {
// docs is empty, because { genders: 2 } is not equal to { genders: 2, eyes: true }
});
// Find all documents in the collection
db.find({}, function (err, docs) {});
// The same rules apply when you want to only find one document
db.findOne({ _id: 'id1' }, function (err, doc) {
// doc is the document Mars
// If no document is found, doc is null
});
Operators ($lt, $lte, $gt, $gte, $in, $nin, $ne, $exists, \$regex)
The syntax is { field: { $op: value } }
where $op
is any comparison operator:
$lt
,$lte
: less than, less than or equal$gt
,$gte
: greater than, greater than or equal$in
: member of.value
must be an array of values$ne
,$nin
: not equal, not a member of$exists
: checks whether the document posses the propertyfield
.value
should be true or false$regex
: checks whether a string is matched by the regular expression. Contrary to MongoDB, the use of$options
with$regex
is not supported, because it doesn't give you more power than regex flags. Basic queries are more readable so only use the$regex
operator when you need to use another operator with it (see example below)
// $lt, $lte, $gt and $gte work on numbers and strings
db.find({ 'humans.genders': { $gt: 5 } }, function (err, docs) {
// docs contains Omicron Persei 8, whose humans have more than 5 genders (7).
});
// When used with strings, lexicographical order is used
db.find({ planet: { $gt: 'Mercury' } }, function (err, docs) {
// docs contains Omicron Persei 8
});
// Using $in. $nin is used in the same way
db.find({ planet: { $in: ['Earth', 'Jupiter'] } }, function (err, docs) {
// docs contains Earth and Jupiter
});
// Using $exists
db.find({ satellites: { $exists: true } }, function (err, docs) {
// docs contains only Mars
});
// Using $regex with another operator
db.find({ planet: { $regex: /ar/, $nin: ['Jupiter', 'Earth'] } }, function (err, docs) {
// docs only contains Mars because Earth was excluded from the match by $nin
});
Array fields
When a field in a document is an array, NeDB first tries to see if the query value is an array to perform an exact match, then whether there is an array-specific comparison function (for now there is only $size
and $elemMatch
) being used. If not, the query is treated as a query on every element and there is a match if at least one element matches.
$size
: match on the size of the array$elemMatch
: matches if at least one array element matches the query entirely
// Exact match
db.find({ satellites: ['Phobos', 'Deimos'] }, function (err, docs) {
// docs contains Mars
});
db.find({ satellites: ['Deimos', 'Phobos'] }, function (err, docs) {
// docs is empty
});
// Using an array-specific comparison function
// $elemMatch operator will provide match for a document, if an element from the array field satisfies all the conditions specified with the `$elemMatch` operator
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: 3 } } } }, function (err, docs) {
// docs contains documents with id 5 (completeData)
});
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: 5 } } } }, function (err, docs) {
// docs is empty
});
// You can use inside #elemMatch query any known document query operator
db.find({ completeData: { planets: { $elemMatch: { name: 'Earth', number: { $gt: 2 } } } } }, function (err, docs) {
// docs contains documents with id 5 (completeData)
});
// Note: you can't use nested comparison functions, e.g. { $size: { $lt: 5 } } will throw an error
db.find({ satellites: { $size: 2 } }, function (err, docs) {
// docs contains Mars
});
db.find({ satellites: { $size: 1 } }, function (err, docs) {
// docs is empty
});
// If a document's field is an array, matching it means matching any element of the array
db.find({ satellites: 'Phobos' }, function (err, docs) {
// docs contains Mars. Result would have been the same if query had been { satellites: 'Deimos' }
});
// This also works for queries that use comparison operators
db.find({ satellites: { $lt: 'Amos' } }, function (err, docs) {
// docs is empty since Phobos and Deimos are after Amos in lexicographical order
});
// This also works with the $in and $nin operator
db.find({ satellites: { $in: ['Moon', 'Deimos'] } }, function (err, docs) {
// docs contains Mars (the Earth document is not complete!)
});
Logical operators $or, $and, $not, $where
You can combine queries using logical operators:
- For
$or
and$and
, the syntax is{ $op: [query1, query2, ...] }
. - For
$not
, the syntax is{ $not: query }
- For
$where
, the syntax is{ $where: function () { /* object is "this", return a boolean */ } }
db.find({ $or: [{ planet: 'Earth' }, { planet: 'Mars' }] }, function (err, docs) {
// docs contains Earth and Mars
});
db.find({ $not: { planet: 'Earth' } }, function (err, docs) {
// docs contains Mars, Jupiter, Omicron Persei 8
});
db.find(
{
$where: function () {
return Object.keys(this) > 6;
},
},
function (err, docs) {
// docs with more than 6 properties
}
);
// You can mix normal queries, comparison queries and logical operators
db.find({ $or: [{ planet: 'Earth' }, { planet: 'Mars' }], inhabited: true }, function (err, docs) {
// docs contains Earth
});
Sorting and paginating
If you don't specify a callback to find
, findOne
or count
, a Cursor
object is returned. You can modify the cursor with sort
, skip
and limit
and then execute it with exec(callback)
.
// Let's say the database contains these 4 documents
// doc1 = { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false, satellites: ['Phobos', 'Deimos'] }
// doc2 = { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true, humans: { genders: 2, eyes: true } }
// doc3 = { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// doc4 = { _id: 'id4', planet: 'Omicron Persei 8', system: 'futurama', inhabited: true, humans: { genders: 7 } }
// No query used means all results are returned (before the Cursor modifiers)
db.find({}).sort({ planet: 1 }).skip(1).limit(2).exec(function (err, docs) {
// docs is [doc3, doc1]
});
// You can sort in reverse order like this
db.find({ system: 'solar' }).sort({ planet: -1 }).exec(function (err, docs) {
// docs is [doc1, doc3, doc2]
});
// You can sort on one field, then another, and so on like this:
db.find({}).sort({ firstField: 1, secondField: -1 }) ... // You understand how this works!
Projections
You can give find
and findOne
an optional second argument, projections
. The syntax is the same as MongoDB: { a: 1, b: 1 }
to return only the a
and b
fields, { a: 0, b: 0 }
to omit these two fields. You cannot use both modes at the time, except for _id
which is by default always returned and which you can choose to omit. You can project on nested documents.
// Same database as above
// Keeping only the given fields
db.find({ planet: 'Mars' }, { planet: 1, system: 1 }, function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar', _id: 'id1' }]
});
// Keeping only the given fields but removing _id
db.find({ planet: 'Mars' }, { planet: 1, system: 1, _id: 0 }, function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar' }]
});
// Omitting only the given fields and removing _id
db.find({ planet: 'Mars' }, { planet: 0, system: 0, _id: 0 }, function (err, docs) {
// docs is [{ inhabited: false, satellites: ['Phobos', 'Deimos'] }]
});
// Failure: using both modes at the same time
db.find({ planet: 'Mars' }, { planet: 0, system: 1 }, function (err, docs) {
// err is the error message, docs is undefined
});
// You can also use it in a Cursor way but this syntax is not compatible with MongoDB
db.find({ planet: 'Mars' })
.projection({ planet: 1, system: 1 })
.exec(function (err, docs) {
// docs is [{ planet: 'Mars', system: 'solar', _id: 'id1' }]
});
// Project on a nested document
db.findOne({ planet: 'Earth' })
.projection({ planet: 1, 'humans.genders': 1 })
.exec(function (err, doc) {
// doc is { planet: 'Earth', _id: 'id2', humans: { genders: 2 } }
});
Counting documents
You can use count
to count documents. It has the same syntax as find
. For example:
// Count all planets in the solar system
db.count({ system: 'solar' }, function (err, count) {
// count equals to 3
});
// Count all documents in the datastore
db.count({}, function (err, count) {
// count equals to 4
});
Updating documents
db.update(query, update, options, callback)
will update all documents matching query
according to the update
rules:
query
is the same kind of finding query you use withfind
andfindOne
update
specifies how the documents should be modified. It is either a new document or a set of modifiers (you cannot use both together, it doesn't make sense!)- A new document will replace the matched docs
- The modifiers create the fields they need to modify if they don't exist, and you can apply them to subdocs. Available field modifiers are
$set
to change a field's value,$unset
to delete a field,$inc
to increment a field's value and$min
/$max
to change field's value, only if provided value is less/greater than current value. To work on arrays, you have$push
,$pop
,$addToSet
,$pull
, and the special$each
and$slice
. See examples below for the syntax. options
is an object with two possible parametersmulti
(defaults tofalse
) which allows the modification of several documents if set to trueupsert
(defaults tofalse
) if you want to insert a new document corresponding to theupdate
rules if yourquery
doesn't match anything. If yourupdate
is a simple object with no modifiers, it is the inserted document. In the other case, thequery
is stripped from all operator recursively, and theupdate
is applied to it.returnUpdatedDocs
(defaults tofalse
, not MongoDB-compatible) if set to true and update is not an upsert, will return the array of documents matched by the find query and updated. Updated documents will be returned even if the update did not actually modify them.callback
(optional) signature:(err, numAffected, affectedDocuments, upsert)
. Warning: the API was changed between v1.7.4 and v1.8. Please refer to the change log to see the change.- For an upsert,
affectedDocuments
contains the inserted document and theupsert
flag is set totrue
. - For a standard update with
returnUpdatedDocs
flag set tofalse
,affectedDocuments
is not set. - For a standard update with
returnUpdatedDocs
flag set totrue
andmulti
tofalse
,affectedDocuments
is the updated document. - For a standard update with
returnUpdatedDocs
flag set totrue
andmulti
totrue
,affectedDocuments
is the array of updated documents.
Note: you can't change a document's _id.
// Let's use the same example collection as in the "finding document" part
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persia 8', system: 'futurama', inhabited: true }
// Replace a document by another
db.update({ planet: 'Jupiter' }, { planet: 'Pluton'}, {}, function (err, numReplaced) {
// numReplaced = 1
// The doc #3 has been replaced by { _id: 'id3', planet: 'Pluton' }
// Note that the _id is kept unchanged, and the document has been replaced
// (the 'system' and inhabited fields are not here anymore)
});
// Set an existing field's value
db.update({ system: 'solar' }, { $set: { system: 'solar system' } }, { multi: true }, function (err, numReplaced) {
// numReplaced = 3
// Field 'system' on Mars, Earth, Jupiter now has value 'solar system'
});
// Setting the value of a non-existing field in a subdocument by using the dot-notation
db.update({ planet: 'Mars' }, { $set: { "data.satellites": 2, "data.red": true } }, {}, function () {
// Mars document now is { _id: 'id1', system: 'solar', inhabited: false
// , data: { satellites: 2, red: true }
// }
// Not that to set fields in subdocuments, you HAVE to use dot-notation
// Using object-notation will just replace the top-level field
db.update({ planet: 'Mars' }, { $set: { data: { satellites: 3 } } }, {}, function () {
// Mars document now is { _id: 'id1', system: 'solar', inhabited: false
// , data: { satellites: 3 }
// }
// You lost the "data.red" field which is probably not the intended behavior
});
});
// Deleting a field
db.update({ planet: 'Mars' }, { $unset: { planet: true } }, {}, function () {
// Now the document for Mars doesn't contain the planet field
// You can unset nested fields with the dot notation of course
});
// Upserting a document
db.update({ planet: 'Pluton' }, { planet: 'Pluton', inhabited: false }, { upsert: true }, function (err, numReplaced, upsert) {
// numReplaced = 1, upsert = { _id: 'id5', planet: 'Pluton', inhabited: false }
// A new document { _id: 'id5', planet: 'Pluton', inhabited: false } has been added to the collection
});
// If you upsert with a modifier, the upserted doc is the query modified by the modifier
// This is simpler than it sounds :)
db.update({ planet: 'Pluton' }, { $inc: { distance: 38 } }, { upsert: true }, function () {
// A new document { _id: 'id5', planet: 'Pluton', distance: 38 } has been added to the collection
});
// If we insert a new document { _id: 'id6', fruits: ['apple', 'orange', 'pear'] } in the collection,
// let's see how we can modify the array field atomically
// $push inserts new elements at the end of the array
db.update({ _id: 'id6' }, { $push: { fruits: 'banana' } }, {}, function () {
// Now the fruits array is ['apple', 'orange', 'pear', 'banana']
});
// $pop removes an element from the end (if used with 1) or the front (if used with -1) of the array
db.update({ _id: 'id6' }, { $pop: { fruits: 1 } }, {}, function () {
// Now the fruits array is ['apple', 'orange']
// With { $pop: { fruits: -1 } }, it would have been ['orange', 'pear']
});
// $addToSet adds an element to an array only if it isn't already in it
// Equality is deep-checked (i.e. $addToSet will not insert an object in an array already containing the same object)
// Note that it doesn't check whether the array contained duplicates before or not
db.update({ _id: 'id6' }, { $addToSet: { fruits: 'apple' } }, {}, function () {
// The fruits array didn't change
// If we had used a fruit not in the array, e.g. 'banana', it would have been added to the array
});
// $pull removes all values matching a value or even any NeDB query from the array
db.update({ _id: 'id6' }, { $pull: { fruits: 'apple' } }, {}, function () {
// Now the fruits array is ['orange', 'pear']
});
db.update({ _id: 'id6' }, { $pull: { fruits: $in: ['apple', 'pear'] } }, {}, function () {
// Now the fruits array is ['orange']
});
// $each can be used to $push or $addToSet multiple values at once
// This example works the same way with $addToSet
db.update({ _id: 'id6' }, { $push: { fruits: { $each: ['banana', 'orange'] } } }, {}, function () {
// Now the fruits array is ['apple', 'orange', 'pear', 'banana', 'orange']
});
// $slice can be used in cunjunction with $push and $each to limit the size of the resulting array.
// A value of 0 will update the array to an empty array. A positive value n will keep only the n first elements
// A negative value -n will keep only the last n elements.
// If $slice is specified but not $each, $each is set to []
db.update({ _id: 'id6' }, { $push: { fruits: { $each: ['banana'], $slice: 2 } } }, {}, function () {
// Now the fruits array is ['apple', 'orange']
});
// $min/$max to update only if provided value is less/greater than current value
// Let's say the database contains this document
// doc = { _id: 'id', name: 'Name', value: 5 }
db.update({ _id: 'id1' }, { $min: { value: 2 } }, {}, function () {
// The document will be updated to { _id: 'id', name: 'Name', value: 2 }
});
db.update({ _id: 'id1' }, { $min: { value: 8 } }, {}, function () {
// The document will not be modified
});
Removing documents
db.remove(query, options, callback)
will remove all documents matching query
according to options
query
is the same as the ones used for finding and updatingoptions
only one option for now:multi
which allows the removal of multiple documents if set to true. Default is falsecallback
is optional, signature: err, numRemoved
// Let's use the same example collection as in the "finding document" part
// { _id: 'id1', planet: 'Mars', system: 'solar', inhabited: false }
// { _id: 'id2', planet: 'Earth', system: 'solar', inhabited: true }
// { _id: 'id3', planet: 'Jupiter', system: 'solar', inhabited: false }
// { _id: 'id4', planet: 'Omicron Persia 8', system: 'futurama', inhabited: true }
// Remove one document from the collection
// options set to {} since the default for multi is false
db.remove({ _id: 'id2' }, {}, function (err, numRemoved) {
// numRemoved = 1
});
// Remove multiple documents
db.remove({ system: 'solar' }, { multi: true }, function (err, numRemoved) {
// numRemoved = 3
// All planets from the solar system were removed
});
// Removing all documents with the 'match-all' query
db.remove({}, { multi: true }, function (err, numRemoved) {});
Indexing
NeDB supports indexing. It gives a very nice speed boost and can be used to enforce a unique constraint on a field. You can index any field, including fields in nested documents using the dot notation. For now, indexes are only used to speed up basic queries and queries using $in
, $lt
, $lte
, $gt
and $gte
. The indexed values cannot be of type array of object.
To create an index, use datastore.ensureIndex(options, cb)
, where callback is optional and get passed an error if any (usually a unique constraint that was violated). ensureIndex
can be called when you want, even after some data was inserted, though it's best to call it at application startup. The options are:
- fieldName (required): name of the field to index. Use the dot notation to index a field in a nested document.
- unique (optional, defaults to
false
): enforce field uniqueness. Note that a unique index will raise an error if you try to index two documents for which the field is not defined. - sparse (optional, defaults to
false
): don't index documents for which the field is not defined. Use this option along with "unique" if you want to accept multiple documents for which it is not defined. - expireAfterSeconds (number of seconds, optional): if set, the created index is a TTL (time to live) index, that will automatically remove documents when the system date becomes larger than the date on the indexed field plus
expireAfterSeconds
. Documents where the indexed field is not specified or not aDate
object are ignored
Note: the _id
is automatically indexed with a unique constraint, no need to call ensureIndex
on it.
You can remove a previously created index with datastore.removeIndex(fieldName, cb)
.
If your datastore is persistent, the indexes you created are persisted in the datafile, when you load the database a second time they are automatically created for you. No need to remove any ensureIndex
though, if it is called on a database that already has the index, nothing happens.
db.ensureIndex({ fieldName: 'somefield' }, function (err) {
// If there was an error, err is not null
});
// Using a unique constraint with the index
db.ensureIndex({ fieldName: 'somefield', unique: true }, function (err) {});
// Using a sparse unique index
db.ensureIndex({ fieldName: 'somefield', unique: true, sparse: true }, function (err) {});
// Format of the error message when the unique constraint is not met
db.insert({ somefield: 'nedb' }, function (err) {
// err is null
db.insert({ somefield: 'nedb' }, function (err) {
// err is { errorType: 'uniqueViolated'
// , key: 'name'
// , message: 'Unique constraint violated for key name' }
});
});
// Remove index on field somefield
db.removeIndex('somefield', function (err) {});
// Example of using expireAfterSeconds to remove documents 1 hour
// after their creation (db's timestampData option is true here)
db.ensureIndex({ fieldName: 'createdAt', expireAfterSeconds: 3600 }, function (err) {});
// You can also use the option to set an expiration date like so
db.ensureIndex({ fieldName: 'expirationDate', expireAfterSeconds: 0 }, function (err) {
// Now all documents will expire when system time reaches the date in their
// expirationDate field
});
Note: the ensureIndex
function creates the index synchronously, so it's best to use it at application startup. It's quite fast so it doesn't increase startup time much (35 ms for a collection containing 10,000 documents).
Browser version
The browser version and its minified counterpart are in the browser-version/out
directory. You only need to require nedb.js
or nedb.min.js
in your HTML file and the global object Nedb
can be used right away, with the same API as the server version:
<script src="nedb.min.js"></script>
<script>
var db = new Nedb(); // Create an in-memory only datastore
db.insert({ planet: 'Earth' }, function (err) {
db.find({}, function (err, docs) {
// docs contains the two planets Earth and Mars
});
});
</script>
If you specify a filename
, the database will be persistent, and automatically select the best storage method available (IndexedDB, WebSQL or localStorage) depending on the browser. In most cases that means a lot of data can be stored, typically in hundreds of MB. WARNING: the storage system changed between v1.3 and v1.4 and is NOT back-compatible! Your application needs to resync client-side when you upgrade NeDB.
NeDB is compatible with all major browsers: Chrome, Safari, Firefox, IE9+. Tests are in the browser-version/test
directory (files index.html
and testPersistence.html
).
If you fork and modify nedb, you can build the browser version from the sources, the build script is browser-version/build.js
.
Performance
Speed
NeDB is not intended to be a replacement of large-scale databases such as MongoDB, and as such was not designed for speed. That said, it is still pretty fast on the expected datasets, especially if you use indexing. On a typical, not-so-fast dev machine, for a collection containing 10,000 documents, with indexing:
- Insert: 10,680 ops/s
- Find: 43,290 ops/s
- Update: 8,000 ops/s
- Remove: 11,750 ops/s
You can run these simple benchmarks by executing the scripts in the benchmarks
folder. Run them with the --help
flag to see how they work.
Memory footprint
A copy of the whole database is kept in memory. This is not much on the expected kind of datasets (20MB for 10,000 2KB documents).
Use in other services
- connect-nedb-session is a session store for Connect and Express, backed by nedb
- If you mostly use NeDB for logging purposes and don't want the memory footprint of your application to grow too large, you can use NeDB Logger to insert documents in a NeDB-readable database
- If you've outgrown NeDB, switching to MongoDB won't be too hard as it is the same API. Use this utility to transfer the data from a NeDB database to a MongoDB collection
- An ODM for NeDB: Camo
Pull requests
If you submit a pull request, thanks! There are a couple rules to follow though to make it manageable:
- The pull request should be atomic, i.e. contain only one feature. If it contains more, please submit multiple pull requests. Reviewing massive, 1000 loc+ pull requests is extremely hard.
- Likewise, if for one unique feature the pull request grows too large (more than 200 loc tests not included), please get in touch first.
- Please stick to the current coding style. It's important that the code uses a coherent style for readability.
- Do not include sylistic improvements ("housekeeping"). If you think one part deserves lots of housekeeping, use a separate pull request so as not to pollute the code.
- Don't forget tests for your new feature. Also don't forget to run the whole test suite before submitting to make sure you didn't introduce regressions.
- Do not build the browser version in your branch, I'll take care of it once the code is merged.
- Update the readme accordingly.
- Last but not least: keep in mind what NeDB's mindset is! The goal is not to be a replacement for MongoDB, but to have a pure JS database, easy to use, cross platform, fast and expressive enough for the target projects (small and self contained apps on server/desktop/browser/mobile). Sometimes it's better to shoot for simplicity than for API completeness with regards to MongoDB.
Bug reporting guidelines
If you report a bug, thank you! That said for the process to be manageable please strictly adhere to the following guidelines. I'll not be able to handle bug reports that don't:
- Your bug report should be a self-containing gist complete with a package.json for any dependencies you need. I need to run through a simple
git clone gist; npm install; node bugreport.js
, nothing more. - It should use assertions to showcase the expected vs actual behavior and be hysteresis-proof. It's quite simple in fact, see this example: https://gist.github.com/louischatriot/220cf6bd29c7de06a486
- Simplify as much as you can. Strip all your application-specific code. Most of the time you will see that there is no bug but an error in your code :)
- 50 lines max. If you need more, read the above point and rework your bug report. If you're really convinced you need more, please explain precisely in the issue.
- The code should be Javascript, not Coffeescript.
Bitcoins
You don't have time? You can support NeDB by sending bitcoins to this address: 1dDZLnWpBbodPiN8sizzYrgaz5iahFyb1
License
See License