@__username/decision-tree 中文文档教程

发布于 5年前 浏览 25 项目主页 更新于 3年前

Decision Tree for NodeJS

该模块包含决策树的 NodeJS 实现,使用 ID3 算法

Table Of Contents

Installation

npm install decision-tree

Usage

  • 导入模块:

    var DecisionTree = require('decision-tree');
    
  • 准备训练数据集:

    var training_data = [
        {"color":"blue", "shape":"square", "liked":false},
        {"color":"red", "shape":"square", "liked":false},
        {"color":"blue", "shape":"circle", "liked":true},
        {"color":"red", "shape":"circle", "liked":true},
        {"color":"blue", "shape":"hexagon", "liked":false},
        {"color":"red", "shape":"hexagon", "liked":false},
        {"color":"yellow", "shape":"hexagon", "liked":true},
        {"color":"yellow", "shape":"circle", "liked":true}
    ];
    
  • 准备测试数据集:

    var test_data = [
        {"color":"blue", "shape":"hexagon", "liked":false},
        {"color":"red", "shape":"hexagon", "liked":false},
        {"color":"yellow", "shape":"hexagon", "liked":true},
        {"color":"yellow", "shape":"circle", "liked":true}
    ];
    
  • 设置目标用于预测的类:

    var class_name = "liked";
    
  • 设置决策树要使用的特征:

    var features = ["color", "shape"];
    
  • 创建决策树和训练模型:

    var dt = new DecisionTree(training_data, class_name, features);
    
  • 预测实例的类标签:

    var predicted_class = dt.predict({
        color: "blue",
        shape: "hexagon"
    });
    
  • 评估数据集上的模型:

    var accuracy = dt.evaluate(test_data);
    
  • 导出基础模型以进行可视化或检查:

    var treeModel = dt.toJSON();
    

Decision Tree for NodeJS

This module contains the NodeJS Implementation of Decision Tree using ID3 Algorithm

Table Of Contents

Installation

npm install decision-tree

Usage

  • Import the module:

    var DecisionTree = require('decision-tree');
    
  • Prepare training dataset:

    var training_data = [
        {"color":"blue", "shape":"square", "liked":false},
        {"color":"red", "shape":"square", "liked":false},
        {"color":"blue", "shape":"circle", "liked":true},
        {"color":"red", "shape":"circle", "liked":true},
        {"color":"blue", "shape":"hexagon", "liked":false},
        {"color":"red", "shape":"hexagon", "liked":false},
        {"color":"yellow", "shape":"hexagon", "liked":true},
        {"color":"yellow", "shape":"circle", "liked":true}
    ];
    
  • Prepare test dataset:

    var test_data = [
        {"color":"blue", "shape":"hexagon", "liked":false},
        {"color":"red", "shape":"hexagon", "liked":false},
        {"color":"yellow", "shape":"hexagon", "liked":true},
        {"color":"yellow", "shape":"circle", "liked":true}
    ];
    
  • Setup Target Class used for prediction:

    var class_name = "liked";
    
  • Setup Features to be used by decision tree:

    var features = ["color", "shape"];
    
  • Create decision tree and train model:

    var dt = new DecisionTree(training_data, class_name, features);
    
  • Predict class label for an instance:

    var predicted_class = dt.predict({
        color: "blue",
        shape: "hexagon"
    });
    
  • Evaluate model on a dataset:

    var accuracy = dt.evaluate(test_data);
    
  • Export underlying model for visualization or inspection:

    var treeModel = dt.toJSON();
    
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文