3net.js 中文文档教程

发布于 9年前 浏览 9 项目主页 更新于 3年前

3net.js

用于实现 3 层神经网络的简单库

NPM

Initialization

var three_net = require('3net.js');     // Install with 'npm install 3net.js'
var inputLayer = 400;
var hiddenLayer = 25;
var outputLayer = 10;
var neuron = "rectifier";               // The activation function. Can be "rectifier", "sigmoid", or "tanh"

//If neuron is not specified, the default sigmoid will be used
var net = three_net.createNet(inputLayer, hiddenLayer, outputLayer, neuron);  

Online training

// If options is not specified, the default values will be used.
options = {
    "learning_rate": 0.3,   // Learning rate for gradient descent. The default is 0.5
    "dropconnect": 0.5,     // DropConnect parameter to prevent overfitting. Must be a value between 0 and 1. It represents the chance that a weight will be randomly set to 0 during training. The default is 0
    "regularization": 0.3,  // L2 regularization parameter to prevent overfitting. The default is 0
};

// Data and label must be an array matching the dimensions of the input layer and output layer
var success = net.train(data, label, options);

//Returns true if training was successful
if (success) console.log("training complete");  

Training on a set

// If options is not specified, the default values will be used.
options = {
    "iters": 100,               // Maximum amount of time stochastic gradient descent will run. The default is 1000
    "learning_rate": 0.5,       // Learning rate for gradient descent. The default is 0.5
    "regularization": 1,        // L2 regularization parameter to prevent overfitting. The default is 0
    "dropconnect": 0.5,         // DropConnect parameter to prevent overfitting. Must be a value between 0 and 1. It represents the chance that a weight will be randomly set to 0 during training. The default is 0
    "change_cost": 0.00001,     // If the change in cross entropy cost between iterations is less than this, the net will stop training. The default is 0.00001
};

// Data and label are arrays containing the training set
var success = net.trainSet(dataset, labels, options);

//Returns true if training was successful
if (success) console.log("training complete");  

Predicting

net.predict(data);  // Returns an array with the output layer activations

Importing and exporting

var savedNet = net.exportNet();                 // Exports as JSON
var copiedNet = three_net.importNet(savedNet);  // Imports from JSON

Example: Training an XOR

var three_net = require('3net.js');
var net = three_net.createNet(2, 3, 1);

inputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
labels = [[0], [1], [1], [0]];

// Uses default options since it is not specified
net.trainSet(inputs, labels);

console.log(net.predict([1, 1])); // Outputs 0.020773462753469724
console.log(net.predict([1, 0])); // Outputs 0.9836636258293651

// Output values be slightly different when you try it because of random intialization

An online training example can be found here

3net.js

A simple library for implementing 3 layer neural networks

NPM

Initialization

var three_net = require('3net.js');     // Install with 'npm install 3net.js'
var inputLayer = 400;
var hiddenLayer = 25;
var outputLayer = 10;
var neuron = "rectifier";               // The activation function. Can be "rectifier", "sigmoid", or "tanh"

//If neuron is not specified, the default sigmoid will be used
var net = three_net.createNet(inputLayer, hiddenLayer, outputLayer, neuron);  

Online training

// If options is not specified, the default values will be used.
options = {
    "learning_rate": 0.3,   // Learning rate for gradient descent. The default is 0.5
    "dropconnect": 0.5,     // DropConnect parameter to prevent overfitting. Must be a value between 0 and 1. It represents the chance that a weight will be randomly set to 0 during training. The default is 0
    "regularization": 0.3,  // L2 regularization parameter to prevent overfitting. The default is 0
};

// Data and label must be an array matching the dimensions of the input layer and output layer
var success = net.train(data, label, options);

//Returns true if training was successful
if (success) console.log("training complete");  

Training on a set

// If options is not specified, the default values will be used.
options = {
    "iters": 100,               // Maximum amount of time stochastic gradient descent will run. The default is 1000
    "learning_rate": 0.5,       // Learning rate for gradient descent. The default is 0.5
    "regularization": 1,        // L2 regularization parameter to prevent overfitting. The default is 0
    "dropconnect": 0.5,         // DropConnect parameter to prevent overfitting. Must be a value between 0 and 1. It represents the chance that a weight will be randomly set to 0 during training. The default is 0
    "change_cost": 0.00001,     // If the change in cross entropy cost between iterations is less than this, the net will stop training. The default is 0.00001
};

// Data and label are arrays containing the training set
var success = net.trainSet(dataset, labels, options);

//Returns true if training was successful
if (success) console.log("training complete");  

Predicting

net.predict(data);  // Returns an array with the output layer activations

Importing and exporting

var savedNet = net.exportNet();                 // Exports as JSON
var copiedNet = three_net.importNet(savedNet);  // Imports from JSON

Example: Training an XOR

var three_net = require('3net.js');
var net = three_net.createNet(2, 3, 1);

inputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
labels = [[0], [1], [1], [0]];

// Uses default options since it is not specified
net.trainSet(inputs, labels);

console.log(net.predict([1, 1])); // Outputs 0.020773462753469724
console.log(net.predict([1, 0])); // Outputs 0.9836636258293651

// Output values be slightly different when you try it because of random intialization

An online training example can be found here

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文