有没有办法在拥抱面部训练师的拥抱面孔中打电话给宏观精神?
目前,我正在使用拥抱面模型在Feft-2015数据集上进行测试。我想将我的结果与已完成的结果进行比较。
我从数据集
库中检查了list_metrics
方法,但我没有看到宏观精度,这是研究人员当时使用的指标。
您有任何迹象表明我如何解决这个问题吗?
I'm currently making tests on the DEFT-2015 dataset using Hugging Face models. I would like to compare my results to what has been done.
I checked in the list_metrics
method from the datasets
library, but I did not see Macro Precision, which was the metric used at the time by the researchers.
Do you have any indication for how I could tackle the problem ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
huggingface
library(版本4.20.0
)似乎取决于Scikit-Learn库的窗帘呼叫后面。如果您只使用(不使用
scikit-learn
):它将抛出一个错误
为什么此简介?
好吧,实际上,您可以轻松地使用数据集指标来计算您的指标(就像Scikit-Learn一样)。
您只需要添加“平均”参数:
上面的摘要将打印
{'precision':0.833333333333333334}
,因为(1 + 1 + 1 + 1 + 1 + 0.5)/3 = 0.83 = 0.83
,这正是您要搜索的宏观精度的定义。结论:使用
平均
参数设置您要计算度量的方式(Micro/Macro/加权)。The
huggingface
library (version4.20.0
) seems to depend behind the curtains calls to scikit-learn library.If you just use (without using
scikit-learn
):it will throw an error that
Why this intro?
Well, in fact, you can easily use datasets metrics to calculate however you want your metric (just exactly like scikit-learn does).
You just need to add the 'average' parameter:
The snippet above will print
{'precision': 0.8333333333333334}
, because(1 + 1 + 0.5) / 3 = 0.83
, which is exactly the definition of macro precision you are searching for.Conclusion : Use the
average
parameter to set the way you want to calculate your metric (micro/macro/weighted).