如何处理缺少值的线性优化问题?
让我们考虑以下示例代码:
rng('default')
% creating fake data
data = randi([-1000 +1000],30,500);
yt = randi([-1000 1000],30,1);
% creating fake missing values
row = randi([1 15],1,500);
col = rand(1,500) < .5;
% imputing missing fake values
for i = 1:500
if col(i) == 1
data(1:row(i),i) = nan;
end
end
%% here starts my problem
wgts = ones(1,500); % optimal weights needs to be binary (only zero or one)
% this would be easy with matrix formulas but I have missing values at the
% beginning of the series
for j = 1:30
xt(j,:) = sum(data(j,:) .* wgts,2,'omitnan');
end
X = [xt(3:end) xt(2:end-1) xt(1:end-2)];
y = yt(3:end);
% from here I basically need to:
% maximize the Adjusted R squared of the regression fitlm(X,y)
% by changing wgts
% subject to wgts = 1 or wgts = 0
% and optionally to impose sum(wgts,'all') = some number;
% basically I need to select the data cols with the highest explanatory
% power, omitting missing data
使用Excel Solver相对易于实现,但是它只能处理200个决策变量,并且需要大量时间。先感谢您。
Let's consider this example code:
rng('default')
% creating fake data
data = randi([-1000 +1000],30,500);
yt = randi([-1000 1000],30,1);
% creating fake missing values
row = randi([1 15],1,500);
col = rand(1,500) < .5;
% imputing missing fake values
for i = 1:500
if col(i) == 1
data(1:row(i),i) = nan;
end
end
%% here starts my problem
wgts = ones(1,500); % optimal weights needs to be binary (only zero or one)
% this would be easy with matrix formulas but I have missing values at the
% beginning of the series
for j = 1:30
xt(j,:) = sum(data(j,:) .* wgts,2,'omitnan');
end
X = [xt(3:end) xt(2:end-1) xt(1:end-2)];
y = yt(3:end);
% from here I basically need to:
% maximize the Adjusted R squared of the regression fitlm(X,y)
% by changing wgts
% subject to wgts = 1 or wgts = 0
% and optionally to impose sum(wgts,'all') = some number;
% basically I need to select the data cols with the highest explanatory
% power, omitting missing data
This is relatively easy to implement with Excel solver, but but it can handle only 200 decision variables and it takes a lot of time. Thank you in advance.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
lasso 似乎给出了有趣的结果:
//i.sstatic.net/qeesd.png“ rel =” nofollow noreferrer”>
sum(coef〜 = 0)
>输出仅由29列解释,而
alpha
中的所有值均为零lasso seems to give interesting results:
sum(coef~=0)
Output has been explained by 29 columns only, whereas all the values in
alpha
were non zero