将excel文件从数据帧熊猫保存到SharePoint(Office365 API)
我有此数据框,我想将其保存为SharePoint文件夹中的Excel文件。
这是我的代码:
from office365.runtime.auth.client_credential import ClientCredential
from office365.sharepoint.client_context import ClientContext
# auth
client_credentials = ClientCredential(var_client_id, var_client_secret)
ctx = ClientContext(var_sp_site).with_credentials(client_credentials)
df = pd.DataFrame(sql_table)
var_relative_url = "sharepoint_path/sharepoint_path"
target_folder = ctx.web.get_folder_by_server_relative_url(var_relative_url)
target_folder.upload_file(content=df.to_excel(excel_writer='teste.xlsx'), file_name='teste.xlsx').execute_query() # Here is my problem
当我执行此代码时,Excel文件将在文件夹中创建,但是当我尝试在SharePoint接口上打开文件时,它会引起错误(“无法打开”)。
此代码将在云功能上运行,因此我无法使用本地文件上传。
I have this dataframe, and I want to save it as a excel file in a sharepoint folder.
This is my code:
from office365.runtime.auth.client_credential import ClientCredential
from office365.sharepoint.client_context import ClientContext
# auth
client_credentials = ClientCredential(var_client_id, var_client_secret)
ctx = ClientContext(var_sp_site).with_credentials(client_credentials)
df = pd.DataFrame(sql_table)
var_relative_url = "sharepoint_path/sharepoint_path"
target_folder = ctx.web.get_folder_by_server_relative_url(var_relative_url)
target_folder.upload_file(content=df.to_excel(excel_writer='teste.xlsx'), file_name='teste.xlsx').execute_query() # Here is my problem
When I execute this code, the excel file is created at the folder, but when I try to open the file on sharepoint interface it raises a error ("cannot be opened").
This code will run on a cloud function, so I can't use local files to upload.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我现在正在调查这个问题。尚未解决尚未购买,我可以为您提供工作:使用.save()
从错误到警告;)
I'm investigating this issue right now. Not solved yet buy I can give you a work around: use .save()
From error to warning ;)