值:sequential_34层的输入0与图层不兼容:预期ndim = 3,发现ndim = 2。收到完整的形状:(无,2)
我不明白为什么我会遇到这个错误,
ValueError: Input 0 of layer sequential_41 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 2)
这是我的代码
import numpy
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.layers import Bidirectional
from keras.layers import TimeDistributed
from sklearn.model_selection import KFold, cross_val_score, train_test_split
model = Sequential()
model.add(LSTM(40, return_sequences=True, input_shape=(2, 1)))
model.add(Dense(20, activation='relu'))
model.add(Dense(16, activation='sigmoid'))
model.add(Dense(5, activation='tanh'))
model.add(Flatten())
model.add(Dense(2, activation='softmax'))
model.compile(loss='mean_squared_logarithmic_error', optimizer ='adam', metrics=['accuracy'])
#model.fit(trainx, trainy, epochs=10, batch_size=64, verbose=False, shuffle = False)
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
callbacks=[callback]
model.fit(trainx, trainy, epochs=10, batch_size=10, callbacks=[callback])
model.save_weights('LSTMBasic1.h5')
print(trainx.shape)
print(trainy.shape)
print(testx.shape)
print(testy.shape)
#(3885, 2)
#(3885,)
#(686, 2)
#(686,)
I can't understand why I am getting this error
ValueError: Input 0 of layer sequential_41 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 2)
This is my code
import numpy
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.layers import Bidirectional
from keras.layers import TimeDistributed
from sklearn.model_selection import KFold, cross_val_score, train_test_split
model = Sequential()
model.add(LSTM(40, return_sequences=True, input_shape=(2, 1)))
model.add(Dense(20, activation='relu'))
model.add(Dense(16, activation='sigmoid'))
model.add(Dense(5, activation='tanh'))
model.add(Flatten())
model.add(Dense(2, activation='softmax'))
model.compile(loss='mean_squared_logarithmic_error', optimizer ='adam', metrics=['accuracy'])
#model.fit(trainx, trainy, epochs=10, batch_size=64, verbose=False, shuffle = False)
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
callbacks=[callback]
model.fit(trainx, trainy, epochs=10, batch_size=10, callbacks=[callback])
model.save_weights('LSTMBasic1.h5')
print(trainx.shape)
print(trainy.shape)
print(testx.shape)
print(testy.shape)
#(3885, 2)
#(3885,)
#(686, 2)
#(686,)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论