一个人如何计算八度多项式的结果?

发布于 2025-02-12 20:05:25 字数 289 浏览 0 评论 0原文

枫木具有计算两个多项式的结果的非常干净的方法:

https://www.maplesoft.com/support/help/maple/maple/view.aspx?path= recrultant

此功能是否在八度中有对应物?

Maple has a very clean way of computing the resultant of two polynomials:

https://www.maplesoft.com/support/help/maple/view.aspx?path=resultant

Does this function have a counterpart in Octave?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

顾挽 2025-02-19 20:05:25

在Scilab中,您将其视为两个多项式的Sylvester矩阵的决定因素。由于Scilab具有本机多项式数据类型,因此它很简单:

--> a = poly([1 2 3 4],"x","roots")
 a  = 
  24 -50x +35x² -10x³ +x⁴

--> b = poly([-2 -1 5],"x","roots")
 b  = 
  -10 -13x -2x² +x³

--> det(sylm(a,b))
 ans  =
   1036800.0

在Scilab中,sylm()polyenmials e节。显然,八度的多项式章节或控制工具箱中没有等效。可能在其他地方?否则,您可以编辑Scilab sylm()代码,并将其转换为八度。它的长度不到20线,而且简单。由于Sylvester矩阵是一个数字矩阵,因此您只需将通常的det()函数应用于它。

In Scilab, you get it as the determinant of the Sylvester matrix of the two polynomials. As Scilab has a native polynomial datatype, it comes quite simply:

--> a = poly([1 2 3 4],"x","roots")
 a  = 
  24 -50x +35x² -10x³ +x⁴

--> b = poly([-2 -1 5],"x","roots")
 b  = 
  -10 -13x -2x² +x³

--> det(sylm(a,b))
 ans  =
   1036800.0

In Scilab, sylm() is in the Polynomials section. Apparently there is no equivalent in Octave's Polynomial chapter, nor in its control toolbox. May be elsewhere? Otherwise, you can edit the Scilab sylm() code, and transpose it into Octave. It is less than 20-line long, and simple. Since the Sylvester matrix is a numerical one, you then have just to apply the usual det() function to it.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文