将grouby dict_keys转换为具有关键值的字典
对于下面给出的示例文件,如何将groupby
键转换为字典,然后将整数编号分配给键?我希望最终能够通过字典迭代每个键的字典中的数字。
到目前为止,这是我的代码:
import math
import pandas as pd
original_df = pd.read_csv('NewDatasetTotal4.csv')
original_df = original_df.astype(str)
length = original_df.original_class.count()
group_size = original_df.groupby('original_class').size()
colum_to_grab = 'original_class'
group_list = original_df.groupby(colum_to_grab)
# How to now convert the group_list.groups.keys() to a dictionary with
# pigs_size = 5
# goats_size = 3
# chickens_size = 7
# hens_size = 7
# sheep_size = 2
分配的整数可以在[5,3,7,7,2]
的数组中,
这是我的数据文件:
slice_file_name fsID start end salience fold classID class_name original_class
1-1000020520400.wav 1 1 pigs
1-100004024000001.wav 1 1 pigs
1-10000406050001.wav 1 1 pigs
1-1000050120400.wav 1 1 pigs
1-1000050320400.wav 1 1 pigs
1-1000050520400.wav 1 2 goats
1-10000601400001000.wav 1 2 goats
1-1000060340000.wav 1 2 goats
1-100006070500.wav 1 3 chickens
1-100007020800.wav 1 3 chickens
1-100007024000001.wav 1 3 chickens
1-1000070320400.wav 1 3 chickens
1-100007050800.wav 1 3 chickens
1-100007064000001.wav 1 3 chickens
1-100010620400.wav 1 3 chickens
1-100040620400.wav 1 3 chickens
1-10006020500.wav 1 3 chickens
1-10006030500.wav 1 3 chickens
1-100060520400.wav 1 4 hens
1-10007020500.wav 1 4 hens
2-100070420400.wav 1 4 hens
2-100070540000.wav 1 4 hens
2-1313131313004.wav 1 4 hens
2-1313131313043.wav 1 4 hens
2-1313131313044.wav 1 5 sheep
2-150002020500.wav 1 5 sheep
2-150002060800.wav 1 5 sheep
2-150004022040001.wav 1 5 sheep
2-15000406050001.wav 1 5 sheep
2-150006014000001.wav 1 5 sheep
2-150006024000001.wav 1 5 sheep
For the sample file given below, how to go about converting the groupby
keys to a dictionary and then assigning integer numbers to the keys? I wanted to be able to eventually iterate through the dictionary extracting the numbers from the dictionary for each respective key.
Here is my code so far:
import math
import pandas as pd
original_df = pd.read_csv('NewDatasetTotal4.csv')
original_df = original_df.astype(str)
length = original_df.original_class.count()
group_size = original_df.groupby('original_class').size()
colum_to_grab = 'original_class'
group_list = original_df.groupby(colum_to_grab)
# How to now convert the group_list.groups.keys() to a dictionary with
# pigs_size = 5
# goats_size = 3
# chickens_size = 7
# hens_size = 7
# sheep_size = 2
Can the assigned integers be in an array like [5, 3, 7, 7, 2]
Here is my data file:
slice_file_name fsID start end salience fold classID class_name original_class
1-1000020520400.wav 1 1 pigs
1-100004024000001.wav 1 1 pigs
1-10000406050001.wav 1 1 pigs
1-1000050120400.wav 1 1 pigs
1-1000050320400.wav 1 1 pigs
1-1000050520400.wav 1 2 goats
1-10000601400001000.wav 1 2 goats
1-1000060340000.wav 1 2 goats
1-100006070500.wav 1 3 chickens
1-100007020800.wav 1 3 chickens
1-100007024000001.wav 1 3 chickens
1-1000070320400.wav 1 3 chickens
1-100007050800.wav 1 3 chickens
1-100007064000001.wav 1 3 chickens
1-100010620400.wav 1 3 chickens
1-100040620400.wav 1 3 chickens
1-10006020500.wav 1 3 chickens
1-10006030500.wav 1 3 chickens
1-100060520400.wav 1 4 hens
1-10007020500.wav 1 4 hens
2-100070420400.wav 1 4 hens
2-100070540000.wav 1 4 hens
2-1313131313004.wav 1 4 hens
2-1313131313043.wav 1 4 hens
2-1313131313044.wav 1 5 sheep
2-150002020500.wav 1 5 sheep
2-150002060800.wav 1 5 sheep
2-150004022040001.wav 1 5 sheep
2-15000406050001.wav 1 5 sheep
2-150006014000001.wav 1 5 sheep
2-150006024000001.wav 1 5 sheep
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如果我正确理解您,您可以做:
此打印:
编辑:
打印:
If I understand you correctly, you can do:
This prints:
EDIT:
Prints: