GAN的发电机和鉴别器的损失最初是最低的 - 这是正常的吗?
我正在尝试训练一个简单的甘恩,我注意到发电机和鉴别器的损失是第一个时代最低的?那怎么可能?我想念什么吗?
不过,它似乎并没有太大变化。当我收到此错误消息时,我无法在建议的行上使用Torch.ones():“参数大小(位置1)必须是INT的元组,而不是张量”。知道怎么办?
from glob import glob
import sys
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.utils as vutils
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchinfo import summary
from mpl_toolkits.axes_grid1 import ImageGrid
from skimage import io
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from tqdm import trange
manual_seed = 999
path = 'Punks'
image_paths = glob(path + '/*.png')
img_size = 28
batch_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'
transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
class ImageDataset(Dataset):
def __init__(self, paths, transform):
self.paths = paths
self.transform = transform
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
image_path = self.paths[index]
image = io.imread(image_path)
if self.transform:
image_tensor = self.transform(image)
return image_tensor
if __name__ == '__main__':
dataset = ImageDataset(image_paths, transform)
train_loader = DataLoader(
dataset, batch_size=batch_size, num_workers=2, shuffle=True)
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(784*3, 2048),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, x):
x = x.view(x.size(0), 784*3)
output = self.model(x)
return output
discriminator = Discriminator().to(device=device)
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, 1024),
nn.ReLU(),
nn.Linear(1024, 2048),
nn.ReLU(),
nn.Linear(2048, 784*3),
nn.Tanh(),
)
def forward(self, x):
output = self.model(x)
output = output.view(x.size(0), 3, 28, 28)
return output
generator = Generator().to(device=device)
lr = 0.0001
num_epochs = 10
loss_function = nn.BCELoss()
#noise = torch.randn(batch_size, 100, device=device)
optimizer_discriminator = torch.optim.Adam(
discriminator.parameters(), lr=lr)
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr)
model = Discriminator().to(device=device)
summary(model, input_size=(batch_size, 3, 28, 28))
model = Generator().to(device=device)
summary(model, input_size=(batch_size, 100))
image_list = []
Dis_losses = []
Gen_losses = []
iters = 0
epochs = 0
for epoch in trange((num_epochs), bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:120}{r_bar}\n'):
for n, real_samples in enumerate(train_loader):
batch_size = len(real_samples)
real_samples = real_samples.to(device=device)
real_samples_labels = torch.ones((batch_size, 1)).to(device=device)
latent_space_samples = torch.randn(
(batch_size, 100)).to(device=device)
fake_samples = generator(latent_space_samples)
fake_samples_labels = torch.zeros(
(batch_size, 1)).to(device=device)
discriminator.zero_grad()
output_discriminator_real = discriminator(real_samples)
loss_discriminator_real = loss_function(
output_discriminator_real, real_samples_labels)
output_discriminator_fake = discriminator(fake_samples)
loss_discriminator_fake = loss_function(
output_discriminator_fake, fake_samples_labels)
loss_discriminator = (
loss_discriminator_real + loss_discriminator_fake)/2
loss_discriminator.backward()
optimizer_discriminator.step()
latent_space_samples = torch.randn(
(batch_size, 100)).to(device=device)
generator.zero_grad()
fake_samples = generator(latent_space_samples)
output_discriminator_fake = discriminator(fake_samples)
loss_generator = loss_function(
output_discriminator_fake, real_samples_labels)
loss_generator.backward()
optimizer_generator.step()
image_list.append(vutils.make_grid(
fake_samples_labels, padding=2, normalize=True))
Dis_losses.append(loss_discriminator.item())
Gen_losses.append(loss_generator.item())
iters += 1
epochs += 1
if n == batch_size - 1:
print(f"Epoch: {epoch} Loss D.: {loss_discriminator}")
print(f"Epoch: {epoch} Loss G.: {loss_generator}")
latent_space_samples = torch.randn((batch_size, 100)).to(device=device)
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(Dis_losses, label="D")
plt.plot(Gen_losses, label="G")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
I am trying to train a simple GAN and I noticed that the loss for the generator and discriminator is the lowest in the first epoch? How can that be? Did I miss something?
Below you find the plot of the Loss over the iterations:
Here is the code I was using:
I adapted the code according to your suggest @emrejik. It doesn't seem to have changed much though. I couldn't work with torch.ones() at the suggested lines as I was receiving this error message: "argument size (position 1) must be tuple of ints, not Tensor". Any idea how come?
I ran through 10 epochs and this came out now:
from glob import glob
import sys
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.utils as vutils
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchinfo import summary
from mpl_toolkits.axes_grid1 import ImageGrid
from skimage import io
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from tqdm import trange
manual_seed = 999
path = 'Punks'
image_paths = glob(path + '/*.png')
img_size = 28
batch_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'
transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
class ImageDataset(Dataset):
def __init__(self, paths, transform):
self.paths = paths
self.transform = transform
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
image_path = self.paths[index]
image = io.imread(image_path)
if self.transform:
image_tensor = self.transform(image)
return image_tensor
if __name__ == '__main__':
dataset = ImageDataset(image_paths, transform)
train_loader = DataLoader(
dataset, batch_size=batch_size, num_workers=2, shuffle=True)
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(784*3, 2048),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, x):
x = x.view(x.size(0), 784*3)
output = self.model(x)
return output
discriminator = Discriminator().to(device=device)
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, 1024),
nn.ReLU(),
nn.Linear(1024, 2048),
nn.ReLU(),
nn.Linear(2048, 784*3),
nn.Tanh(),
)
def forward(self, x):
output = self.model(x)
output = output.view(x.size(0), 3, 28, 28)
return output
generator = Generator().to(device=device)
lr = 0.0001
num_epochs = 10
loss_function = nn.BCELoss()
#noise = torch.randn(batch_size, 100, device=device)
optimizer_discriminator = torch.optim.Adam(
discriminator.parameters(), lr=lr)
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr)
model = Discriminator().to(device=device)
summary(model, input_size=(batch_size, 3, 28, 28))
model = Generator().to(device=device)
summary(model, input_size=(batch_size, 100))
image_list = []
Dis_losses = []
Gen_losses = []
iters = 0
epochs = 0
for epoch in trange((num_epochs), bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:120}{r_bar}\n'):
for n, real_samples in enumerate(train_loader):
batch_size = len(real_samples)
real_samples = real_samples.to(device=device)
real_samples_labels = torch.ones((batch_size, 1)).to(device=device)
latent_space_samples = torch.randn(
(batch_size, 100)).to(device=device)
fake_samples = generator(latent_space_samples)
fake_samples_labels = torch.zeros(
(batch_size, 1)).to(device=device)
discriminator.zero_grad()
output_discriminator_real = discriminator(real_samples)
loss_discriminator_real = loss_function(
output_discriminator_real, real_samples_labels)
output_discriminator_fake = discriminator(fake_samples)
loss_discriminator_fake = loss_function(
output_discriminator_fake, fake_samples_labels)
loss_discriminator = (
loss_discriminator_real + loss_discriminator_fake)/2
loss_discriminator.backward()
optimizer_discriminator.step()
latent_space_samples = torch.randn(
(batch_size, 100)).to(device=device)
generator.zero_grad()
fake_samples = generator(latent_space_samples)
output_discriminator_fake = discriminator(fake_samples)
loss_generator = loss_function(
output_discriminator_fake, real_samples_labels)
loss_generator.backward()
optimizer_generator.step()
image_list.append(vutils.make_grid(
fake_samples_labels, padding=2, normalize=True))
Dis_losses.append(loss_discriminator.item())
Gen_losses.append(loss_generator.item())
iters += 1
epochs += 1
if n == batch_size - 1:
print(f"Epoch: {epoch} Loss D.: {loss_discriminator}")
print(f"Epoch: {epoch} Loss G.: {loss_generator}")
latent_space_samples = torch.randn((batch_size, 100)).to(device=device)
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(Dis_losses, label="D")
plt.plot(Gen_losses, label="G")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我没有看到歧视器的损失函数的适当使用。您应该将真实的样本和生成样品分别提供给鉴别器。我认为您应该将代码更改为这样的形式:
plot lose_disc和loss_generator,这应该是工作
I didn't see the proper use of loss function for the discriminator. You should give real samples and generated samples separately to the discriminator. I think you should change your code to a form like this:
plot loss_disc and loss_generator, this should be work