GAN的发电机和鉴别器的损失最初是最低的 - 这是正常的吗?

发布于 2025-02-12 01:40:31 字数 6497 浏览 2 评论 0原文

我正在尝试训练一个简单的甘恩,我注意到发电机和鉴别器的损失是第一个时代最低的?那怎么可能?我想念什么吗?

在下面,您可以在迭代中找到损失的情节:

​不过,它似乎并没有太大变化。当我收到此错误消息时,我无法在建议的行上使用Torch.ones():“参数大小(位置1)必须是INT的元组,而不是张量”。知道怎么办?

我跑了10个时代,现在出现了: ”

from glob import glob
import sys
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.utils as vutils
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchinfo import summary
from mpl_toolkits.axes_grid1 import ImageGrid
from skimage import io
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from tqdm import trange


manual_seed = 999

path = 'Punks'
image_paths = glob(path + '/*.png')
img_size = 28
batch_size = 32


device = 'cuda' if torch.cuda.is_available() else 'cpu'

transform = transforms.Compose(
    [
        transforms.ToPILImage(),
        transforms.Resize(img_size),
        transforms.CenterCrop(img_size),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
    ]
)


class ImageDataset(Dataset):
    def __init__(self, paths, transform):
        self.paths = paths
        self.transform = transform

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        image_path = self.paths[index]
        image = io.imread(image_path)

        if self.transform:
            image_tensor = self.transform(image)

        return image_tensor


   
if __name__ == '__main__':

   
    dataset = ImageDataset(image_paths, transform)

    train_loader = DataLoader(
        dataset, batch_size=batch_size, num_workers=2, shuffle=True)

 
       
    class Discriminator(nn.Module):
        def __init__(self):
            super().__init__()
            self.model = nn.Sequential(
                nn.Linear(784*3, 2048),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(2048, 1024),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(1024, 512),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(512, 256),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(256, 1),
                nn.Sigmoid(),
            )

        def forward(self, x):
            x = x.view(x.size(0), 784*3)
            output = self.model(x)
            return output

    discriminator = Discriminator().to(device=device)

       
    class Generator(nn.Module):
        def __init__(self):
            super().__init__()
            self.model = nn.Sequential(
                nn.Linear(100, 256),
                nn.ReLU(),
                nn.Linear(256, 512),
                nn.ReLU(),
                nn.Linear(512, 1024),
                nn.ReLU(),
                nn.Linear(1024, 2048),
                nn.ReLU(),
                nn.Linear(2048, 784*3),
                nn.Tanh(),
            )

        def forward(self, x):
            output = self.model(x)
            output = output.view(x.size(0), 3, 28, 28)
            return output

    generator = Generator().to(device=device)

    lr = 0.0001
    num_epochs = 10
    loss_function = nn.BCELoss()
    #noise = torch.randn(batch_size, 100, device=device)

    optimizer_discriminator = torch.optim.Adam(
        discriminator.parameters(), lr=lr)
    optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr)

    model = Discriminator().to(device=device)
    summary(model, input_size=(batch_size, 3, 28, 28))

    model = Generator().to(device=device)
    summary(model, input_size=(batch_size, 100))

    image_list = []
    Dis_losses = []
    Gen_losses = []
    iters = 0
    epochs = 0

    for epoch in trange((num_epochs), bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:120}{r_bar}\n'):
        for n, real_samples in enumerate(train_loader):

            batch_size = len(real_samples)
            real_samples = real_samples.to(device=device)
            real_samples_labels = torch.ones((batch_size, 1)).to(device=device)

            latent_space_samples = torch.randn(
                (batch_size, 100)).to(device=device)

            fake_samples = generator(latent_space_samples)
            fake_samples_labels = torch.zeros(
                (batch_size, 1)).to(device=device)


            discriminator.zero_grad()

            output_discriminator_real = discriminator(real_samples) 
            loss_discriminator_real = loss_function(
                output_discriminator_real, real_samples_labels)  

            output_discriminator_fake = discriminator(fake_samples)  
            loss_discriminator_fake = loss_function(
                output_discriminator_fake, fake_samples_labels) 

            loss_discriminator = (
                loss_discriminator_real + loss_discriminator_fake)/2        

            loss_discriminator.backward()
            optimizer_discriminator.step()

            latent_space_samples = torch.randn(
                (batch_size, 100)).to(device=device)

            generator.zero_grad()

            fake_samples = generator(latent_space_samples)
            output_discriminator_fake = discriminator(fake_samples)
            loss_generator = loss_function(
                output_discriminator_fake, real_samples_labels) 
 
            loss_generator.backward()
            optimizer_generator.step()


            image_list.append(vutils.make_grid(
                fake_samples_labels, padding=2, normalize=True))
            Dis_losses.append(loss_discriminator.item())
            Gen_losses.append(loss_generator.item())
            iters += 1
            epochs += 1

            if n == batch_size - 1:
                print(f"Epoch: {epoch} Loss D.: {loss_discriminator}")
                print(f"Epoch: {epoch} Loss G.: {loss_generator}")

       
    latent_space_samples = torch.randn((batch_size, 100)).to(device=device)

    plt.figure(figsize=(10, 5))
    plt.title("Generator and Discriminator Loss During Training")
    plt.plot(Dis_losses, label="D")
    plt.plot(Gen_losses, label="G")
    plt.xlabel("iterations")
    plt.ylabel("Loss")
    plt.legend()
    plt.show()

I am trying to train a simple GAN and I noticed that the loss for the generator and discriminator is the lowest in the first epoch? How can that be? Did I miss something?

Below you find the plot of the Loss over the iterations:LOSS of GAN

Here is the code I was using:

I adapted the code according to your suggest @emrejik. It doesn't seem to have changed much though. I couldn't work with torch.ones() at the suggested lines as I was receiving this error message: "argument size (position 1) must be tuple of ints, not Tensor". Any idea how come?

I ran through 10 epochs and this came out now: LOSS of GAN_Second Try

from glob import glob
import sys
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.utils as vutils
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchinfo import summary
from mpl_toolkits.axes_grid1 import ImageGrid
from skimage import io
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from tqdm import trange


manual_seed = 999

path = 'Punks'
image_paths = glob(path + '/*.png')
img_size = 28
batch_size = 32


device = 'cuda' if torch.cuda.is_available() else 'cpu'

transform = transforms.Compose(
    [
        transforms.ToPILImage(),
        transforms.Resize(img_size),
        transforms.CenterCrop(img_size),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
    ]
)


class ImageDataset(Dataset):
    def __init__(self, paths, transform):
        self.paths = paths
        self.transform = transform

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        image_path = self.paths[index]
        image = io.imread(image_path)

        if self.transform:
            image_tensor = self.transform(image)

        return image_tensor


   
if __name__ == '__main__':

   
    dataset = ImageDataset(image_paths, transform)

    train_loader = DataLoader(
        dataset, batch_size=batch_size, num_workers=2, shuffle=True)

 
       
    class Discriminator(nn.Module):
        def __init__(self):
            super().__init__()
            self.model = nn.Sequential(
                nn.Linear(784*3, 2048),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(2048, 1024),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(1024, 512),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(512, 256),
                nn.ReLU(),
                nn.Dropout(0.3),
                nn.Linear(256, 1),
                nn.Sigmoid(),
            )

        def forward(self, x):
            x = x.view(x.size(0), 784*3)
            output = self.model(x)
            return output

    discriminator = Discriminator().to(device=device)

       
    class Generator(nn.Module):
        def __init__(self):
            super().__init__()
            self.model = nn.Sequential(
                nn.Linear(100, 256),
                nn.ReLU(),
                nn.Linear(256, 512),
                nn.ReLU(),
                nn.Linear(512, 1024),
                nn.ReLU(),
                nn.Linear(1024, 2048),
                nn.ReLU(),
                nn.Linear(2048, 784*3),
                nn.Tanh(),
            )

        def forward(self, x):
            output = self.model(x)
            output = output.view(x.size(0), 3, 28, 28)
            return output

    generator = Generator().to(device=device)

    lr = 0.0001
    num_epochs = 10
    loss_function = nn.BCELoss()
    #noise = torch.randn(batch_size, 100, device=device)

    optimizer_discriminator = torch.optim.Adam(
        discriminator.parameters(), lr=lr)
    optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr)

    model = Discriminator().to(device=device)
    summary(model, input_size=(batch_size, 3, 28, 28))

    model = Generator().to(device=device)
    summary(model, input_size=(batch_size, 100))

    image_list = []
    Dis_losses = []
    Gen_losses = []
    iters = 0
    epochs = 0

    for epoch in trange((num_epochs), bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:120}{r_bar}\n'):
        for n, real_samples in enumerate(train_loader):

            batch_size = len(real_samples)
            real_samples = real_samples.to(device=device)
            real_samples_labels = torch.ones((batch_size, 1)).to(device=device)

            latent_space_samples = torch.randn(
                (batch_size, 100)).to(device=device)

            fake_samples = generator(latent_space_samples)
            fake_samples_labels = torch.zeros(
                (batch_size, 1)).to(device=device)


            discriminator.zero_grad()

            output_discriminator_real = discriminator(real_samples) 
            loss_discriminator_real = loss_function(
                output_discriminator_real, real_samples_labels)  

            output_discriminator_fake = discriminator(fake_samples)  
            loss_discriminator_fake = loss_function(
                output_discriminator_fake, fake_samples_labels) 

            loss_discriminator = (
                loss_discriminator_real + loss_discriminator_fake)/2        

            loss_discriminator.backward()
            optimizer_discriminator.step()

            latent_space_samples = torch.randn(
                (batch_size, 100)).to(device=device)

            generator.zero_grad()

            fake_samples = generator(latent_space_samples)
            output_discriminator_fake = discriminator(fake_samples)
            loss_generator = loss_function(
                output_discriminator_fake, real_samples_labels) 
 
            loss_generator.backward()
            optimizer_generator.step()


            image_list.append(vutils.make_grid(
                fake_samples_labels, padding=2, normalize=True))
            Dis_losses.append(loss_discriminator.item())
            Gen_losses.append(loss_generator.item())
            iters += 1
            epochs += 1

            if n == batch_size - 1:
                print(f"Epoch: {epoch} Loss D.: {loss_discriminator}")
                print(f"Epoch: {epoch} Loss G.: {loss_generator}")

       
    latent_space_samples = torch.randn((batch_size, 100)).to(device=device)

    plt.figure(figsize=(10, 5))
    plt.title("Generator and Discriminator Loss During Training")
    plt.plot(Dis_losses, label="D")
    plt.plot(Gen_losses, label="G")
    plt.xlabel("iterations")
    plt.ylabel("Loss")
    plt.legend()
    plt.show()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

黑色毁心梦 2025-02-19 01:40:31

我没有看到歧视器的损失函数的适当使用。您应该将真实的样本和生成样品分别提供给鉴别器。我认为您应该将代码更改为这样的形式:

fake = generator(noise)
disc_real = disc(real)
loss_disc_real = loss_func(disc_real, torch.ones_like(disc_real))
disc_fake = disc(fake)
loss_disc_fake = loss_func(disc_fake,torch.zeros_like(disc_fake))
loss_disc = (loss_disc_real+loss_disc_fake)/2
....

loss_generator = loss_func(disc_fake,torch.ones_like(disc_fake))
...

plot lose_disc和loss_generator,这应该是工作

I didn't see the proper use of loss function for the discriminator. You should give real samples and generated samples separately to the discriminator. I think you should change your code to a form like this:

fake = generator(noise)
disc_real = disc(real)
loss_disc_real = loss_func(disc_real, torch.ones_like(disc_real))
disc_fake = disc(fake)
loss_disc_fake = loss_func(disc_fake,torch.zeros_like(disc_fake))
loss_disc = (loss_disc_real+loss_disc_fake)/2
....

loss_generator = loss_func(disc_fake,torch.ones_like(disc_fake))
...

plot loss_disc and loss_generator, this should be work

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文