时间序列聚类:改变动态时间扭曲的扭曲窗口
我正在研究相同类型的数据,我想对《时代》系列进行分类以查找清晰的使用模式。 我的数据是从一家电信公司的客户那里收集的,我们希望检测使用其WiFi框消费的数据量的模式。因此,每个客户都有一个时间序列,每6分钟都消耗了多少数据(我将其重新采样到数小时)。 我还使用tslearn
使用kmeanstimeseries将DTW应用于:
km = TimeSeriesKMeans(n_clusters = cluster_count, metric="dtw", verbose=1)
labels = km.fit_predict(mySeries)
我的问题是我想更改python中DTW的翘曲窗口,我很确定这很容易,但是我只是找不到coud coud一种做到这一点的方法。我还想找到最佳的窗口参数。
I'm working on the same type of data and i want to classify the times series to find clear pattern of use.
My data is collected from clients of a telecom company, and we want to detect pattern of the amount of data consumed by clients with their wifi box. So each client have a time series of how much data he consumed each 6minutes (I resampled it to hours).
I also applied DTW with KmeansTimeSeries using tslearn
:
km = TimeSeriesKMeans(n_clusters = cluster_count, metric="dtw", verbose=1)
labels = km.fit_predict(mySeries)
My question is i want to change the warping window for DTW in python, and i'm pretty sure it's easy think to do, but i just coudn't find a way to do it. I also want to find the best window parameter for my case.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
假设您在谈论Tslearn软件包,我们可以查看 limeserieskmeans 。
这些参数详细描述为:
因此我们可以将参数传递给度量标准。然后,然后研究 dtw公制提供,我们找到的地方
因此,我建议您打电话
Assuming that you are talking about the tslearn package, we can have a look into the documentation of TimeSeriesKMeans.
The parameters are described in detail as:
So we can pass parameters to the metric. Lets then investigate the parameters that the dtw metric offers, where we find
Thus, I suggest you call