泊松模型与自举的SE中的标准误差

发布于 2025-02-11 23:55:33 字数 227 浏览 1 评论 0原文

我试图比较两种方法中的SES:

  1. 在GLM Poisson模型中的结果部分中打印的SE,与
  2. 我从引导中获得的系数的SE相比(基本上,我用更换重新采样了相同数量的观察值,并适合一个新的观察值泊松模型并获取系数,然后我从1000个引导程序中计算出系数的SD),

但是两种方法中的SES却大不相同。 1)的SE小得多。我认为它们在数字上会很相似。

有人有解释吗?

I was trying to compare the SEs from two approaches:

  1. the SE printed in the results section in the GLM poisson model, vs.
  2. the SE of the coefficient I got from bootstrapping (basically I resampled the same number of observations with replacement and fit a new Poisson model and get the coefficient, then I compute the SD of the coefficients from 1000 bootstraps)

However the SEs from the two approaches are quite different. The SE from the 1) is much smaller. I thought they would be numerically similar.

Anyone has a explanation?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

扛起拖把扫天下 2025-02-18 23:55:33

如果没有可重现的例子,很难回答。通常的怀疑是响应变量中存在过度分散,导致常规的标准错误太小。替代方案包括以下标准错误:Bootstrap,Sandwich,Quasi-Poisson或拟合负二项式模型。

参见有关R的工作示例以及第7.4章, https://discdown.org/microecormentics/ 。这些使用sandwich()函数来自软件包sandwich,该功能还包括Bootstrap协方差的函数vcovbs()

Hard to answer without a reproducible example. The usual suspicion would be that there is overdispersion in the response variable, leading to conventional standard errors that are too small. Alternatives include standard errors from: bootstrap, sandwich, quasi-Poisson, or fitting a negative binomial model instead.

See Section 3 of https://doi.org/10.18637/jss.v027.i08 for a worked example in R as well as Chapter 7.4 in https://discdown.org/microeconometrics/. These use the sandwich() function from the package sandwich which also includes a function vcovBS() for bootstrap covariances.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文