泊松模型与自举的SE中的标准误差
我试图比较两种方法中的SES:
- 在GLM Poisson模型中的结果部分中打印的SE,与
- 我从引导中获得的系数的SE相比(基本上,我用更换重新采样了相同数量的观察值,并适合一个新的观察值泊松模型并获取系数,然后我从1000个引导程序中计算出系数的SD),
但是两种方法中的SES却大不相同。 1)的SE小得多。我认为它们在数字上会很相似。
有人有解释吗?
I was trying to compare the SEs from two approaches:
- the SE printed in the results section in the GLM poisson model, vs.
- the SE of the coefficient I got from bootstrapping (basically I resampled the same number of observations with replacement and fit a new Poisson model and get the coefficient, then I compute the SD of the coefficients from 1000 bootstraps)
However the SEs from the two approaches are quite different. The SE from the 1) is much smaller. I thought they would be numerically similar.
Anyone has a explanation?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如果没有可重现的例子,很难回答。通常的怀疑是响应变量中存在过度分散,导致常规的标准错误太小。替代方案包括以下标准错误:Bootstrap,Sandwich,Quasi-Poisson或拟合负二项式模型。
参见有关R的工作示例以及第7.4章, https://discdown.org/microecormentics/ 。这些使用
sandwich()
函数来自软件包sandwich
,该功能还包括Bootstrap协方差的函数vcovbs()
。Hard to answer without a reproducible example. The usual suspicion would be that there is overdispersion in the response variable, leading to conventional standard errors that are too small. Alternatives include standard errors from: bootstrap, sandwich, quasi-Poisson, or fitting a negative binomial model instead.
See Section 3 of https://doi.org/10.18637/jss.v027.i08 for a worked example in R as well as Chapter 7.4 in https://discdown.org/microeconometrics/. These use the
sandwich()
function from the packagesandwich
which also includes a functionvcovBS()
for bootstrap covariances.