PYOMO模型矩阵最小二乘(FROBENIUS NORM)问题?

发布于 2025-02-11 20:24:05 字数 296 浏览 1 评论 0原文

如何用PYOMO和GUROBI求解器建模以下问题?



这是一个非凸面问题,无法建模为QCQP问题。因此,我想用Pyomo和Gurobi求解器解决它。最困难的部分是矩阵代数(Pyomo尚不支持)。

非常感谢!

How to model the following problem with pyomo and Gurobi solver?


enter image description here


This is a non-convex problem, and can not model as a QCQP problem. So I want to solve it with pyomo and Gurobi solver. The most difficult part is matrix algebra (pyomo do not support yet).

Many thanks!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

你是年少的欢喜 2025-02-18 20:24:05

这是我自己的答案。请让我知道是否有任何错误。谢谢!

import pyomo.environ as pyo 

## get your param
L, Delta = 
K, P = 
O, l = 
ones3 = np.ones((3, 1))

model = pyo.ConcreteModel()

model.r = pyo.RangeSet(0,2) # 3
model.s = pyo.RangeSet(0,0) # 1
model.n = pyo.RangeSet(0,len(L)-1) # n
model.m = pyo.RangeSet(0,len(K)-1) # m
model.q = pyo.RangeSet(0,len(O)-1) # q

def param_rule(I, J, mat):
    return dict(((i,j), mat[i,j]) for i in I for j in J)

model.L = pyo.Param(model.n, model.n, initialize=param_rule(model.n, model.n, L)) # L
model.Delta = pyo.Param(model.n, model.r, initialize=param_rule(model.n, model.r, Delta)) # Delta
model.K = pyo.Param(model.m, model.n, initialize=param_rule(model.m, model.n, K)) # K
model.P = pyo.Param(model.m, model.r, initialize=param_rule(model.m, model.r, P)) # P
model.O = pyo.Param(model.q, model.n, initialize=param_rule(model.q, model.n, O)) # O        
model.ones3 = pyo.Param(model.r, model.s, initialize=param_rule(model.r, model.s, ones3)) # ones3        
model.l = pyo.Param(model.q, initialize=dict(((i),l[i,0]) for i in model.q)) # l
model.V = pyo.Var(model.n, model.r, initialize=param_rule(model.n, model.r, Delta)) # V

def ObjRule(model):
    return 0.5*sum((sum(model.L[i,k]*model.V[k,j] for k in model.n) - model.Delta[i,j])**2 for i in model.n for j in model.r)

model.obj = pyo.Objective(rule=ObjRule, sense=pyo.minimize)

model.constraints = pyo.ConstraintList()

# constraints 1
[model.constraints.add(sum(model.K[i,k] * model.V[k,j] for k in model.n) == model.P[i,j]) for i in model.m for j in model.r]

# constraint 2
for i in model.q:
    model.constraints.add(sum(sum(model.O[i,k] * model.V[k,j] for k in model.n)**2 for j in model.r) == model.l[i])

opt = pyo.SolverFactory('gurobi')
opt.options['nonconvex'] = 2
solution = opt.solve(model)
V_opt = np.array([pyo.value(model.V[i,j]) for i in model.n for j in model.r]).reshape(len(model.n),len(model.r))
obj_values = pyo.value(model.obj)
print("optimum point: \n {} ".format(V_opt))
print("optimal objective: {}".format(obj_values))

Here is my own answer. Please let me know if there are any mistakes. Thanks!

import pyomo.environ as pyo 

## get your param
L, Delta = 
K, P = 
O, l = 
ones3 = np.ones((3, 1))

model = pyo.ConcreteModel()

model.r = pyo.RangeSet(0,2) # 3
model.s = pyo.RangeSet(0,0) # 1
model.n = pyo.RangeSet(0,len(L)-1) # n
model.m = pyo.RangeSet(0,len(K)-1) # m
model.q = pyo.RangeSet(0,len(O)-1) # q

def param_rule(I, J, mat):
    return dict(((i,j), mat[i,j]) for i in I for j in J)

model.L = pyo.Param(model.n, model.n, initialize=param_rule(model.n, model.n, L)) # L
model.Delta = pyo.Param(model.n, model.r, initialize=param_rule(model.n, model.r, Delta)) # Delta
model.K = pyo.Param(model.m, model.n, initialize=param_rule(model.m, model.n, K)) # K
model.P = pyo.Param(model.m, model.r, initialize=param_rule(model.m, model.r, P)) # P
model.O = pyo.Param(model.q, model.n, initialize=param_rule(model.q, model.n, O)) # O        
model.ones3 = pyo.Param(model.r, model.s, initialize=param_rule(model.r, model.s, ones3)) # ones3        
model.l = pyo.Param(model.q, initialize=dict(((i),l[i,0]) for i in model.q)) # l
model.V = pyo.Var(model.n, model.r, initialize=param_rule(model.n, model.r, Delta)) # V

def ObjRule(model):
    return 0.5*sum((sum(model.L[i,k]*model.V[k,j] for k in model.n) - model.Delta[i,j])**2 for i in model.n for j in model.r)

model.obj = pyo.Objective(rule=ObjRule, sense=pyo.minimize)

model.constraints = pyo.ConstraintList()

# constraints 1
[model.constraints.add(sum(model.K[i,k] * model.V[k,j] for k in model.n) == model.P[i,j]) for i in model.m for j in model.r]

# constraint 2
for i in model.q:
    model.constraints.add(sum(sum(model.O[i,k] * model.V[k,j] for k in model.n)**2 for j in model.r) == model.l[i])

opt = pyo.SolverFactory('gurobi')
opt.options['nonconvex'] = 2
solution = opt.solve(model)
V_opt = np.array([pyo.value(model.V[i,j]) for i in model.n for j in model.r]).reshape(len(model.n),len(model.r))
obj_values = pyo.value(model.obj)
print("optimum point: \n {} ".format(V_opt))
print("optimal objective: {}".format(obj_values))
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文