模型部署在Azure机器学习中失败

发布于 2025-02-11 17:51:13 字数 2427 浏览 1 评论 0原文

I am following the procedure as described

    import pandas as pd
    import sklearn
    from sklearn.svm import SVC
    import pickle
    import joblib
    from sklearn.model_selection import train_test_split
    dataset = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header = None, names= colnames )
    dataset = dataset.replace({"class":  {"Iris-setosa":1,"Iris-versicolor":2, "Iris-virginica":3}})
    X = dataset.drop(['class'], axis=1)[:,0]
    y = dataset['class']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    classifier = SVC(kernel = 'linear', random_state = 0)
    #Fit the model on training data
    classifier.fit(X_train, y_train)
    #Make the prediction
    y_pred = classifier.predict(X_test)
    ## Save as a pickle file
    filename= 'final_mod_v1.pkl'
    joblib.dump(classifier,open(filename, 'wb'))

在“模型”选项卡中,我注册了该模型。然后,我尝试将模型部署为Web服务。以下是评分脚本文件。

    import json
    import numpy as np
    import os
    import pickle
    import joblib
    from sklearn.svm import SVC
    from azureml.core import Model
    
    def init():
        global model
        model_name = 'classifier'
        path = Model.get_model_path(model_name)
        model = joblib.load(path)
    
    def run(data):
        try:
            data = json.loads(data)
            result = model.predict(data['data'])
            return {'data' : result.tolist() , 'message' : "Successfully classified Iris"}
    
        except Exception as e:
            error = str(e)
            return {'data' : error , 'message' : 'Failed to classify iris'}

以下是 conda_depentencies.yml

channels:
- anaconda
- conda-forge
dependencies:
- python=3.6.2
- pip:
  - pandas==1.1.5
  - azureml-defaults
  - joblib==0.17.0
- scikit-learn==0.23.2
name: azureml_2d0fd20031db3baaed8684d5f08fe619

我对上面脚本中的最后一行感到困惑azureml_2d0fd20031db31db3baaed8684d5f08fe619

 name: azureml_2d0fd20031db3baaed8684d5f08fe619

部署部署失败了。部署日志显示:

 container "classifier" in pod "wk-caas-9a4c565844b043cfa9d8ba246af11ff5-517e6d8f74175a01ffc43147e5dd8133-pod" is waiting to start: PodInitializing

如果我能为此获得指导,这将有所帮助。

I am following the procedure as described here.
I am trying to register models and deploy them in Azure machine learning. I have the following script:

    import pandas as pd
    import sklearn
    from sklearn.svm import SVC
    import pickle
    import joblib
    from sklearn.model_selection import train_test_split
    dataset = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header = None, names= colnames )
    dataset = dataset.replace({"class":  {"Iris-setosa":1,"Iris-versicolor":2, "Iris-virginica":3}})
    X = dataset.drop(['class'], axis=1)[:,0]
    y = dataset['class']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    classifier = SVC(kernel = 'linear', random_state = 0)
    #Fit the model on training data
    classifier.fit(X_train, y_train)
    #Make the prediction
    y_pred = classifier.predict(X_test)
    ## Save as a pickle file
    filename= 'final_mod_v1.pkl'
    joblib.dump(classifier,open(filename, 'wb'))

In the models tab I registered the model. Then I tried to deploy the model as web service. The following is the scoring script file.

    import json
    import numpy as np
    import os
    import pickle
    import joblib
    from sklearn.svm import SVC
    from azureml.core import Model
    
    def init():
        global model
        model_name = 'classifier'
        path = Model.get_model_path(model_name)
        model = joblib.load(path)
    
    def run(data):
        try:
            data = json.loads(data)
            result = model.predict(data['data'])
            return {'data' : result.tolist() , 'message' : "Successfully classified Iris"}
    
        except Exception as e:
            error = str(e)
            return {'data' : error , 'message' : 'Failed to classify iris'}

The following is the conda_dependencies.yml:

channels:
- anaconda
- conda-forge
dependencies:
- python=3.6.2
- pip:
  - pandas==1.1.5
  - azureml-defaults
  - joblib==0.17.0
- scikit-learn==0.23.2
name: azureml_2d0fd20031db3baaed8684d5f08fe619

I am confused about the last line in the above script azureml_2d0fd20031db3baaed8684d5f08fe619

 name: azureml_2d0fd20031db3baaed8684d5f08fe619

The deployment is failing. Deployment log shows:

 container "classifier" in pod "wk-caas-9a4c565844b043cfa9d8ba246af11ff5-517e6d8f74175a01ffc43147e5dd8133-pod" is waiting to start: PodInitializing

It would be helpful if I can get a guidance on this.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文