如何避免在Linux上杀死我的代码?
我正在尝试运行应该计算分子描述符的代码,但是即使(我认为?)我有足够的内存来处理它,但它被设置的错误杀死。如何编辑代码以避免被OOM杀死?文件“ data.csv”包含〜62K行,其中包含字符串数据。
import deepchem
import os
import numpy as np
import pandas as pd
import tempfile
from rdkit import Chem
from rdkit.Chem import AllChem
import deepchem as dc
from deepchem.utils import download_url, load_from_disk
from simtk.openmm.app import PDBFile
from pdbfixer import PDBFixer
from deepchem.utils.vina_utils import prepare_inputs
import pandas as pd
import os
data = pd.read_csv('data.csv')
pdbid = data['pdb_id'].iloc[1]
ligand = data['smiles'].iloc[1]
fixer = PDBFixer(pdbid=pdbid)
PDBFile.writeFile(fixer.topology, fixer.positions, open('%s.pdb' % (pdbid), 'w'))
p, m = None, None
# fix protein, optimize ligand geometry, and sanitize molecules
try:
p, m = prepare_inputs('%s.pdb' % (pdbid), ligand)
except:
print('%s failed PDB fixing' % (pdbid))
if p and m: # protein and molecule are readable by RDKit
print(pdbid, p.GetNumAtoms())
Chem.rdmolfiles.MolToPDBFile(p, '%s.pdb' % (pdbid))
Chem.rdmolfiles.MolToPDBFile(m, 'ligand_%s.pdb' % (pdbid))
pdbids = data['pdb_id'].values
ligand_smiles = data['smiles'].values
l = []
for (pdbid, ligand) in zip(pdbids, ligand_smiles):
fixer = PDBFixer(url='https://files.rcsb.org/download/%s.pdb' % (pdbid))
PDBFile.writeFile(fixer.topology, fixer.positions, open('%s.pdb' % (pdbid), 'w'))
p, m = None, None
# skip pdb fixing for speed
try:
p, m = prepare_inputs('%s.pdb' % (pdbid), ligand, replace_nonstandard_residues=False,
remove_heterogens=False, remove_water=False,
add_hydrogens=False)
except:
print('%s failed sanitization' % (pdbid))
if p and m: # protein and molecule are readable by RDKit
one = Chem.rdmolfiles.MolToPDBFile(p, '%s.pdb' % (pdbid))
two = Chem.rdmolfiles.MolToPDBFile(m, 'ligand_%s.pdb' % (pdbid))
l.append(p)
l.append(m)
proteins = [f for f in os.listdir('.') if len(f) == 8 and f.endswith('.pdb')]
ligands = [f for f in os.listdir('.') if f.startswith('ligand') and f.endswith('.pdb')]
# Handle failed sanitizations
failures = set([f[:-4] for f in proteins]) - set([f[7:-4] for f in ligands])
for pdbid in failures:
proteins.remove(pdbid + '.pdb')
pdbids = [f[:-4] for f in proteins]
small_dataset = data[data['pdb_id'].isin(pdbids)]
labels = small_dataset.labels
fp_featurizer = dc.feat.CircularFingerprint(size=2048)
features = fp_featurizer.featurize([Chem.MolFromPDBFile(l) for l in ligands])
dataset = dc.data.NumpyDataset(X=features, y=labels, ids=pdbids)
a = dataset.to_dataframe()
a.to_csv('descr.csv')
I'm trying to run my code which is supposed to calculate molecular descriptors, but it gets killed by an Out-of-memory error, even though (I think?) I have enough memory to process it. How can I edit my code to avoid killing by OOM? The file 'Data.csv' contains ~62k rows with string data inside.
import deepchem
import os
import numpy as np
import pandas as pd
import tempfile
from rdkit import Chem
from rdkit.Chem import AllChem
import deepchem as dc
from deepchem.utils import download_url, load_from_disk
from simtk.openmm.app import PDBFile
from pdbfixer import PDBFixer
from deepchem.utils.vina_utils import prepare_inputs
import pandas as pd
import os
data = pd.read_csv('data.csv')
pdbid = data['pdb_id'].iloc[1]
ligand = data['smiles'].iloc[1]
fixer = PDBFixer(pdbid=pdbid)
PDBFile.writeFile(fixer.topology, fixer.positions, open('%s.pdb' % (pdbid), 'w'))
p, m = None, None
# fix protein, optimize ligand geometry, and sanitize molecules
try:
p, m = prepare_inputs('%s.pdb' % (pdbid), ligand)
except:
print('%s failed PDB fixing' % (pdbid))
if p and m: # protein and molecule are readable by RDKit
print(pdbid, p.GetNumAtoms())
Chem.rdmolfiles.MolToPDBFile(p, '%s.pdb' % (pdbid))
Chem.rdmolfiles.MolToPDBFile(m, 'ligand_%s.pdb' % (pdbid))
pdbids = data['pdb_id'].values
ligand_smiles = data['smiles'].values
l = []
for (pdbid, ligand) in zip(pdbids, ligand_smiles):
fixer = PDBFixer(url='https://files.rcsb.org/download/%s.pdb' % (pdbid))
PDBFile.writeFile(fixer.topology, fixer.positions, open('%s.pdb' % (pdbid), 'w'))
p, m = None, None
# skip pdb fixing for speed
try:
p, m = prepare_inputs('%s.pdb' % (pdbid), ligand, replace_nonstandard_residues=False,
remove_heterogens=False, remove_water=False,
add_hydrogens=False)
except:
print('%s failed sanitization' % (pdbid))
if p and m: # protein and molecule are readable by RDKit
one = Chem.rdmolfiles.MolToPDBFile(p, '%s.pdb' % (pdbid))
two = Chem.rdmolfiles.MolToPDBFile(m, 'ligand_%s.pdb' % (pdbid))
l.append(p)
l.append(m)
proteins = [f for f in os.listdir('.') if len(f) == 8 and f.endswith('.pdb')]
ligands = [f for f in os.listdir('.') if f.startswith('ligand') and f.endswith('.pdb')]
# Handle failed sanitizations
failures = set([f[:-4] for f in proteins]) - set([f[7:-4] for f in ligands])
for pdbid in failures:
proteins.remove(pdbid + '.pdb')
pdbids = [f[:-4] for f in proteins]
small_dataset = data[data['pdb_id'].isin(pdbids)]
labels = small_dataset.labels
fp_featurizer = dc.feat.CircularFingerprint(size=2048)
features = fp_featurizer.featurize([Chem.MolFromPDBFile(l) for l in ligands])
dataset = dc.data.NumpyDataset(X=features, y=labels, ids=pdbids)
a = dataset.to_dataframe()
a.to_csv('descr.csv')
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论