卡车类型(其中的无限数)与订单
以下DOCPLEX模型的目标是选择最低成本的卡车以履行所有订单。在以下代码中,我将卡车类型视为1卡车,但实际上,卡车类型可以拥有无限数量的卡车,在这种情况下,我应该如何修改约束和客观功能以适应这一点?
import pandas as pd
import docplex.mp
from docplex.mp.model import Model
df_order = pd.DataFrame([[1,5000],[2,1000],[3,2000]], columns =['OrderID','Weight'])
orders = df_order['OrderID'].values.tolist()
df_order.set_index('OrderID', inplace=True)
df_truck_types = pd.DataFrame([[1,'TYPE1',20000,'SP TRANSPORTS',40000],[2,'TYPE2',20000,'SP TRANSPORTS',40000],[3,'TYPE3',10000,'SP TRANSPORTS',30000]], columns =['TruckTypeID','VehicleType','Capacity','Transporter','TruckCost'])
truck_types = df_truck_types['TruckTypeID'].values.tolist()
df_truck_types.set_index('TruckTypeID', inplace=True)
def get_order(o):
return df_order.loc[o]
def get_truck_type(f):
return df_truck_types.loc[f]
# Decision Variable and Objective Function
mdl = Model(name='itc_load_planning')
Assignment = mdl.binary_var_matrix(orders, truck_types, name='Assignment')
#for objective 1
TruckCost=mdl.sum(Assignment[o,f] * get_truck_type(f).TruckCost for o in orders for f in truck_types)
mdl.minimize(TruckCost)
# C1
for o in orders:
mdl.add_constraint(mdl.sum(Assignment[o,f] for f in truck_types)==1, "C1")
# solve model
print("===solution===")
si = mdl.solve()
mdl.print_solution()
The goal of the docplex model below is to choose the trucks with total minimum cost to fulfill all orders. I treat the truck type as 1 truck in the following code, but in fact, a truck type can have infinite number of truck, in that case, how should I modified the constraints and objective functions to fit that?
import pandas as pd
import docplex.mp
from docplex.mp.model import Model
df_order = pd.DataFrame([[1,5000],[2,1000],[3,2000]], columns =['OrderID','Weight'])
orders = df_order['OrderID'].values.tolist()
df_order.set_index('OrderID', inplace=True)
df_truck_types = pd.DataFrame([[1,'TYPE1',20000,'SP TRANSPORTS',40000],[2,'TYPE2',20000,'SP TRANSPORTS',40000],[3,'TYPE3',10000,'SP TRANSPORTS',30000]], columns =['TruckTypeID','VehicleType','Capacity','Transporter','TruckCost'])
truck_types = df_truck_types['TruckTypeID'].values.tolist()
df_truck_types.set_index('TruckTypeID', inplace=True)
def get_order(o):
return df_order.loc[o]
def get_truck_type(f):
return df_truck_types.loc[f]
# Decision Variable and Objective Function
mdl = Model(name='itc_load_planning')
Assignment = mdl.binary_var_matrix(orders, truck_types, name='Assignment')
#for objective 1
TruckCost=mdl.sum(Assignment[o,f] * get_truck_type(f).TruckCost for o in orders for f in truck_types)
mdl.minimize(TruckCost)
# C1
for o in orders:
mdl.add_constraint(mdl.sum(Assignment[o,f] for f in truck_types)==1, "C1")
# solve model
print("===solution===")
si = mdl.solve()
mdl.print_solution()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这不是OPL模型,而是DocPlex Python模型。
要处理卡车而不是卡车类型,我会更改
为
卡车的卡车,因此您必须对
OPL卡车的容量限制添加限制,您可以很快写这篇文章:
This is not an OPL model but a docplex python model.
To deal with trucks instead of truck types I would change
into
And a truck in trucks would have a capacity so you will have to add a constraint about the capacity limit in a truck
In OPL you can write this very quickly: