自定义列变压器。培训问题

发布于 2025-02-11 02:17:51 字数 1902 浏览 1 评论 0原文

我在尝试实施管道时遇到以下问题 对于预处理器,我想组合添加新列和处理所有其他列。它的工作原理

features = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp','Embarked']
target = ['Survived']
num_features = data[features].select_dtypes(include=['int64', 'float64']).columns
cat_features = data[features].select_dtypes(include=['object']).columns 

X_train = data[features]
y_train = data['Survived']

class Add_family(BaseEstimator, TransformerMixin):
  def __init__(self, add_family = True):
    self.ad_family = add_family
  def fit(self, X, y= None):
    return self
  def transform(self, X, y= None):
    df=pd.DataFrame(X).copy()
    if self.ad_family:
      df['Family_size'] = df.apply(lambda x: x.Parch + x.SibSp + 1, axis=1)
      def get_family_type(var):
        if var == 1:
          return 'alone'
        elif var<=4:
          return 'small'
        else:
          return 'big'
      df['FamilyType'] = df.apply(lambda x: get_family_type(x.Family_size), axis = 1)
      df = df.drop(columns=['Parch', 'SibSp'])
    return df 

num_transformer = Pipeline([('scaler', StandardScaler()),
                            ('imputer',SimpleImputer(strategy='mean'))])

cat_transformer = Pipeline([('onehot', OneHotEncoder(handle_unknown='ignore'))])

col_transform = ColumnTransformer([
        ('cat', cat_transformer, make_column_selector(dtype_include=object)),
        ('num', num_transformer, make_column_selector(dtype_include=np.number))])

preprocessor = Pipeline([('Adder_features', Add_family(add_family=True)),
                         ('transform', col_transform)])
data_f = preprocessor.fit_transform(X_train)
pd.DataFrame(data_f)

,但是当我尝试训练模型时,我会收到以下错误

lr = Pipeline([('prep', preprocessor),
            ('clf', LogisticRegression())])
lr.fit(X_train, y_train)

类型:无法解开非通行的非类型对象

在此处输入图像描述

I am having the following problem while trying to implement pipeline
For the preprocessor, I want to combine adding a new column and processing all other columns. It works as it should

features = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp','Embarked']
target = ['Survived']
num_features = data[features].select_dtypes(include=['int64', 'float64']).columns
cat_features = data[features].select_dtypes(include=['object']).columns 

X_train = data[features]
y_train = data['Survived']

class Add_family(BaseEstimator, TransformerMixin):
  def __init__(self, add_family = True):
    self.ad_family = add_family
  def fit(self, X, y= None):
    return self
  def transform(self, X, y= None):
    df=pd.DataFrame(X).copy()
    if self.ad_family:
      df['Family_size'] = df.apply(lambda x: x.Parch + x.SibSp + 1, axis=1)
      def get_family_type(var):
        if var == 1:
          return 'alone'
        elif var<=4:
          return 'small'
        else:
          return 'big'
      df['FamilyType'] = df.apply(lambda x: get_family_type(x.Family_size), axis = 1)
      df = df.drop(columns=['Parch', 'SibSp'])
    return df 

num_transformer = Pipeline([('scaler', StandardScaler()),
                            ('imputer',SimpleImputer(strategy='mean'))])

cat_transformer = Pipeline([('onehot', OneHotEncoder(handle_unknown='ignore'))])

col_transform = ColumnTransformer([
        ('cat', cat_transformer, make_column_selector(dtype_include=object)),
        ('num', num_transformer, make_column_selector(dtype_include=np.number))])

preprocessor = Pipeline([('Adder_features', Add_family(add_family=True)),
                         ('transform', col_transform)])
data_f = preprocessor.fit_transform(X_train)
pd.DataFrame(data_f)

But when I try to train the model I get the following error

lr = Pipeline([('prep', preprocessor),
            ('clf', LogisticRegression())])
lr.fit(X_train, y_train)

TypeError: cannot unpack non-iterable NoneType object

enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文