嵌套高几何类型合理总和所需的二元拆分算法
有一些很好的来源在线使用二进制拆分技术实施快速总和。例如, ch。 34,JörgArndtBook,(2011), Cheng等。 (2007)和 Haible and Papanikolaou(1997) 和。从上一篇文章中,以下注释适用于对这种线性收敛序列(类型1)的评估,
S = SUM(n=0,+oo,a(n)/b(n)*PROD(k=0,n,p(k)/q(k)))
其中 a(n),b(n),p(n),q(n),q(n)是 o(log n)位的整数。最常使用的 情况是, a(n),b(n),p(n),q(n)是具有整数系数的 n 中的多项式。考虑到具有以下部分序列的以下序列,给定两个索引边界 [n1,n2] s(n1,n2) s
S(n1,n2) = SUM(n=n1,n2-1,a(n)/b(n)*PROD(k=n1,n,p(k)/q(k))
不是直接计算。相反,整数的乘积
P = p(n1) ... p(n2-1)
Q = q(n1) ... q(n2−1)
B = b(n1) ... b(n2-1)
T = B Q S
是通过二进制拆分递归计算的,直到 n2 -n1< 5 直接计算它们时。在 n1 和 n2 的中间,选择一个索引 nm 属于间隔 n1 =< N< nm ,计算属于间隔 nm =&lt的组件 pr,qr,br,tr ; N< N2 并将这些产品和总和设置
P = Pl Pr
Q = Ql Qr,
B = Bl Br
T = Br Qr Tl + Bl Pl Tr
为最终,该算法应用于 n1 = 0 和 n2 = nmax = o(n),以及最终的流量 - 点分裂
S = T/(B Q)
要执行
。 s 与 n 精确的位的位复杂性是 o(((log n)^2 m(n))其中 m(n)是两个 n bit编号的乘法的位复杂性。
在上一篇参考文献中找到的一个稍微修改但更复杂的序列(类型2)也可以通过二进制分割来求和。它具有额外的内部理由总和,其中 c(n) and d(n)是 o(log n)位的
U = SUM(n=0,+oo,a(n)/b(n) * PROD(k=0,n,p(k)/q(k)) * SUM(m=0,n,c(m)/d(m)))
整数这些部分总和
U(n1,n2) = SUM(n=n1,n2-1,a(n)/b(n) * PROD(k=n1,n,p(k)/q(k)) * SUM(m=n1,n,c(m)/d(m)))
该算法是上述算法的变体。
P = p(n1) ... p(n2-1)
Q = q(n1) ... q(n2−1)
B = b(n1) ... b(n2-1)
T = B Q S
D = d(n1) ... d(n2-1)
C = D (c(n1)/d(n1) + ... + c(n2-1)/d(n2-1))
V = D B Q U
如果 n2 -n1 =< 4 这些值直接计算。如果 n2 -n1> 4 它们是通过二元分裂计算的。在 n1 和 n2 的中间选择一个索引 nm ,属于间隔 n1 =&lt的Vl ; N< nm ,计算组件 pr,qr,br,tr,dr,dr,cr,vr,vr 属于间隔 nm =< N< N2 并将这些产品和总和
P = Pl Pr
Q = Ql Qr
B = Bl Br
T = Br Qr Tl + Bl Pl Tr
D = Dl Dr
C = Cl Dr + Cr Dl
V = Dr Br Qr Vl + Dr Cl Bl Pl Tr + Dl Bl Pl Vr
最终设置为 n1 = 0 和 n2 = nmax = o(n)和最终浮点divisions are performed
S = T / (B Q)
V = U / (D B Q)
I have programmed both algorithms in Pari-GP and applied them to compute some mathematical constants using Chudnovsky's formula for Pi,
我想向前一步,通过混合二进制拆分算法和列文型序列变换来加速一些系列。为此,我需要找到这些系列稍微扩展的二元分裂关系。
W = SUM(n=0,+oo,a(n)/b(n) * PROD(k=0,n,p(k)/q(k)) * SUM(m=0,n,c(m)/d(m) * PROD(i=0,m,f(i)/g(i))))
它在内和内部具有额外的理性产品,其中 f(n)和 g(n)是 o(log n)位。这些系列不是高几幅,但它们是嵌套的超几何类型总和。我认为该算法可能来自这些部分系列
W(n1,n2) = SUM(n=n1,n2-1,a(n)/b(n) * PROD(k=n1,n,p(k)/q(k)) * SUM(m=n1,n,c(m)/d(m) * PROD(i=n1,m,f(i)/g(i))))
,如果有人可以得出产品和总和来键入此类型的系列。
我将留下Pari-GP代码以获取pari-gp代码 。如解释所述,计算1和2的快速线性收敛系列。使用?sumbinsplit 寻求帮助。还有一些针对2型系列的测试示例。您可以解开其中之一,并用于
precision(-log10(abs(sumbinsplit(~F)[1]/s-1)),ceil(log10(Digits())));
检查它。
\\ ANSI COLOR CODES
{
DGreen = Dg = "\e[0;32m";
Brown = Br = "\e[0;33m";
DCyan = Dc = "\e[0;36m";
Purple = Pr = "\e[0;35m";
Gray = Gy = "\e[0;37m";
Red = Rd = "\e[0;91m";
Green = Gr = "\e[0;92m";
Yellow = Yw = "\e[0;93m";
Blue = Bl = "\e[0;94m";
Magenta = Mg = "\e[0;95m";
Cyan = Cy = "\e[0;96m";
Reset = "\e[0m";
White = Wh = "\e[0;97m";
Black = Bk = "\e[0;30m";
}
eps()={ my(e=1.); while(e+1. != 1., e>>=1); e; }
addhelp(eps,Str(Yw,"\n SMALLEST REAL NUMBER\n",Wh,"\n eps() ",Gr,"returns the minimum positive real number for current precision"));
log10(x) = if(x==0,log(eps()),log(x))/log(10);
Digits(n) = if(type(n) == "t_INT" && n > 0,default(realprecision,n); precision(1.), precision(1.));
addhelp(Digits,Str(Yw,"\n DIGITS\n",Wh,"\n Digits(n)",Gr," Sets global precision to",Wh," n",Gr," decimal digits.",Wh," Digits()",Gr," returns current global precision."));
addhelp(BinSplit2,Str(Yw,"\n SERIES BINARY SPLITTING (TYPE 2)\n\n",Wh,"BinSplit(~F,n1,n2)",Gr," for ",Wh,"F = [a(n),b(n),p(n),q(n),c(n),d(n)]",Gr," a vector of ",Br,"t_CLOSUREs",Gr," whose\n components are typically polynomials, computes by binary splitting method sums of type\n\n",Wh,"S2 = sum(n=n1,n2-1,a(n)/b(n)*prod(k=n1,n,p(k)/q(k))*sum(m=n1,n,c(m)/d(m)))\n\n",Gr,"Output: ",Wh," [P,Q,B,T,D,C,V]",Gr," integer valued algorithm computing parameters"));
addhelp(BinSplit1,Str(Yw,"\n SERIES BINARY SPLITTING (TYPE 1)\n\n",Wh,"BinSplit(~F,n1,n2)",Gr," for ",Wh,"F = [a(n),b(n),p(n),q(n)]",Gr," a vector of ",Br,"t_CLOSUREs",Gr," whose components\n are typically polynomials, computes by binary splitting method sums of type\n\n",Wh,"S1 = sum(n=n1,n2-1,a(n)/b(n)*prod(k=n1,n,p(k)/q(k)))\n\n",Gr,"Output: ",Wh,"[P,Q,B,T]",Gr," integer valued algorithm computing parameters"));
BinSplit2(~F, n1, n2) =
{
my( P = 1, Q = 1, B = 1, T = 0, D = 1, C = 0, V = 0,
LP, LQ, LB, LT, LD, LC, LV, RP, RQ, RB, RT, RD, RC, RV,
nm, tmp1 = 1, tmp2, tmp3 );
\\
\\ F = [a(n),b(n),p(n),q(n),c(n),d(n)]
\\
if( n2 - n1 < 5,
\\
\\ then
\\
for ( j = n1, n2-1,
LP = F[3](j);
LQ = F[4](j);
LB = F[2](j);
LD = F[6](j);
LC = F[5](j);
\\
tmp2 = LB * LQ;
tmp3 = LP * F[1](j) * tmp1;
T = T * tmp2 + tmp3;
C = C * LD + D * LC;
V = V * tmp2 * LD + C * tmp3;
P *= LP;
Q *= LQ;
B *= LB;
D *= LD;
tmp1 *= LP * LB;
),
\\
\\ else
\\
nm = (n1 + n2) >> 1;
\\
[RP,RQ,RB,RT,RD,RC,RV] = BinSplit2(~F, nm, n2);
[LP,LQ,LB,LT,LD,LC,LV] = BinSplit2(~F, n1, nm);
\\
tmp1 = RB * RQ;
tmp2 = LB * LP;
tmp3 = LC * RD;
\\
P = LP * RP;
Q = RQ * LQ;
B = LB * RB;
T = LT * tmp1 + RT * tmp2;
D = LD * RD;
C = RC * LD + tmp3;
V = RD * LV * tmp1 + ( RT * tmp3 + LD * RV ) * tmp2;
\\
\\ end if
);
return([P,Q,B,T,D,C,V]);
}
BinSplit1(~F, n1, n2) =
{
my( P = 1, Q = 1, B = 1, T = 0,
LP, LQ, LB, LT, RP, RQ, RB, RT,
tmp1 = 1, nm );
\\
\\ F = [a(n),b(n),p(n),q(n)]
\\
if( n2 - n1 < 5,
\\
\\ then
\\
for ( j = n1, n2-1,
LP = F[3](j);
LQ = F[4](j);
LB = F[2](j);
\\
T = T * LB * LQ + LP * F[1](j) * tmp1;
P *= LP;
Q *= LQ;
B *= LB;
\\
tmp1 *= LP * LB;
),
\\
\\ else
\\
nm = (n1 + n2) >> 1;
\\
[RP,RQ,RB,RT] = BinSplit1(~F, nm, n2);
[LP,LQ,LB,LT] = BinSplit1(~F, n1, nm);
\\
P = LP * RP;
Q = RQ * LQ;
B = LB * RB;
T = LT * RB * RQ + RT * LB * LP;
\\
\\ end if
);
return([P,Q,B,T]);
}
sumbinsplit(~F, n1 = 1, dgs = getlocalprec()) =
{
my( n = #F, P, Q, B, T, D, C, V, [a,b] = F[3..4] );
my( n2 = 1 + ceil(dgs*log(10)/log(abs(pollead(Pol(b(x),x))/pollead(Pol(a(x),x))))) );
\\
if ( n > 4, [P, Q, B, T, D, C, V] = BinSplit2(~F,n1,n2); return(1.*([V/D,T]/B/Q)),\
[P, Q, B, T] = BinSplit1(~F,n1,n2); return(1.*(T/B/Q)));
}
addhelp(sumbinsplit,Str(Yw,"\n LINEARLY CONVERGENT SERIES BINARY SPLITTING SUMMATION\n\n",Wh,"sumbinsplit( ~F, {n1 = 1}, {dgs = getlocalprec()} )\n\n",Gr,"for either ",Wh,"F = [a(n),b(n),p(n),q(n)] ",Gr,"or",Wh," F = [a(n),b(n),p(n),q(n),c(n),d(n)]",Gr," vectors of ",Br,"t_CLOSUREs",Gr," whose\n components are typically polynomials. It computes sums of type 1 or type 2 by binary splitting method\n\n (See BinSplit1, BinSplit2 help)\n\n",Wh,"n1",Gr," starting index (default 1),",Wh," dgs",Gr," result's floating precision\n\n",Yw,"OUTPUT:",Gr," either",Wh," S1",Gr," series value (Type 1) or ",Wh," [S2, S1]",Gr," series values [Type 2, Type1]"));
/* TESTINGS */
/*
Digits(100000);
a = n->1;
b = n->n;
p = n->n*(n<<1-1);
q = n->3*(3*n-1)*(3*n-2);
c = n->1;
d = n->n*(n<<1-1)<<1;
s = log(2)*(3*log(2)+Pi/2)/10-Pi^2/60;
F = [a,b,p,q,c,d];
*/
/*
Digits(100000);
s = -Pi*Catalan/2+33/32*zeta(3)+log(2)*Pi^2/24;
F = [n->1,n->n^2,n->n*(n<<1-1),n->3*(3*n-1)*(3*n-2),n->1,n->n*(n<<1-1)<<1];
\\ precision(-log10(abs(sumbinsplit(~F)[1]/s-1)),ceil(log10(Digits())));
*/
/*
Digits(10000);
a = n->1;
b = n->n<<1+1;
p = n->n<<1-1;
q = n->n<<3;
c = n->1;
d = n->(n<<1-1)^2;
s = Pi^3/648;
F = [a,b,p,q,c,d];
*/
/*
Digits(10000);
a = n->-1;
b = n->n^3;
p = n->-n;
q = n->(n<<1-1)<<1;
c = n->20*n-9;
d = n->n*(n<<1-1)<<1;
s = 2*Pi^4/75;
F = [a,b,p,q,c,d];
*/
/*
Digits(10000);
a = n->2;
b = n->n^2;
p = n->n;
q = n->(n<<1-1);
c = n->1;
d = n->n<<1-1;
s = 7*zeta(3)-2*Pi*Catalan;
F = [a,b,p,q,c,d];
*/
/*
Digits(10000);
a = n->1;
b = n->n^4;
p = n->n;
q = n->(n<<1-1)<<1;
c = n->36*n-17;
d = n->n*(n<<1-1)<<1;
s = 14*zeta(5)/9+5/18*Pi^2*zeta(3);
F = [a,b,p,q,c,d];
*/
/*
Digits(10000);
a = n->1;
b = n->n^2;
p = n->n;
q = n->(n<<1-1)<<1;
c = n->12*n-5;
d = n->n*(n<<1-1)<<1;
s = 5*zeta(3)/3;
F = [a,b,p,q,c,d];
*/
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
对嵌套超几何序列 w 和部分总和进行密切分析 w(n1,n2)我发现了二进制分裂关系,
在中写入内部超几何总和W(n1,n2),因为
我们的
算法是前一个算法的更深层变化。现在,我们有8个多项式函数 a(n),b(n),p(n),q(n),c(n),d(n),f(n),f(n),g(n),g(n)。 设置这些产品和总和将通过二进制分解计算
如果 n2 -n1 =&lt ; 4 这些值直接计算。如果 n2 -n1&gt; 4 它们是通过二进制拆分递归计算的。在 n1 和 n2 的中间选择一个索引 nm ,vl,fl,gl 属于间隔 n1 =&lt; N&lt; nm ,计算组件 pr,qr,br,tr,dr,dr,cr,vr,fr,gr,gr N&lt; N2 使用辅助变量和分解,将这些产品和总和设置为总和
,这27个大整数产品可以降低至19个。最后,该算法应用于 n1 = 0 和 n2 = nmax = o(n),并执行最终的浮点划分。算法提供了所有3总和,
我将编码并测试此算法以补充此答案。应用于某些缓慢收敛系列的许多收敛加速方法(CAM)具有W系列的结构(例如,某些经典的凸轮,例如Salzer's,Gustavson's,sumalt(来自Pari GP -Cohen,Rodriguez,Rodriguez,Zagier- - 型凸轮)。我认为,Binsplit和Levin型序列转换的合并应为该主题提供强大的推动力。我们会看到。
Making a close analysis of the nested hypergeometric series W and partial sums W(n1,n2) I have found the binary splitting relationships,
Write the inner hypergeometric sum in W(n1,n2) as
we have
The algorithm is a deeper variation of the previous one. We have now 8 polynomial functions a(n), b(n), p(n), q(n), c(n), d(n), f(n), g(n). Set these products and sums to be computed by binary splitting
If n2 - n1 =< 4 these values are computed directly. If n2 - n1 > 4 they are computed recursively by binary splitting. Choose an index nm in the middle of n1 and n2, compute the components Pl, Ql, Bl , Tl, Dl, Cl, Vl, Fl, Gl belonging to the interval n1 =< n < nm, compute the components Pr, Qr , Br, Tr, Dr, Cr, Vr, Fr, Gr belonging to the interval nm =< n < n2 and set these products and sums
Using auxiliary variables and factorizing, these 27 big integer products can be reduced to just 19. Finally, this algorithm is applied to n1 = 0 and n2 = nmax = O(N), and final floating point divisions are performed. Algorithm provides all 3 sums
I will code and test this algorithm to complement this answer. Many convergence acceleration methods (CAM) applied to some slowly convergent series have the structure of series W (for example, some classical CAMs like Salzer's, Gustavson's, sumalt() from Pari GP -Cohen, Rodriguez, Zagier-, Weniger's transformations and several Levin-type CAMs). I believe that the merge of BinSplit and Levin-type sequence transformations should provide a strong boost to this topic. We will see.