单个多边形的光栅标准化
library(raster)
library(rnaturalearth)
library(terra)
r <- raster::getData('CMIP5', var='tmin', res=10, rcp=45, model='HE', year=70)
r <- r[[1]]
shp <- rnaturalearth::ne_countries()
newcrs <- "+proj=robin +datum=WGS84"
r <- rast(r)
shp <- vect(shp)
r_pr <- terra::project(r, newcrs)
shp_pr <- terra::project(shp, newcrs)
对于shp_pr
中的每个国家/地区,我要标准化基础栅格 以0-1的比例。这意味着将一个牢房除以一个国家边界内的所有单元的总和,并为所有国家重复。我正在这样做如下:
country_vec <- shp$sovereignt
temp_ls <- list()
for(c in seq_along(country_vec)){
country_ref <- country_vec[c]
if(country_ref == "Antarctica") { next }
shp_ct <- shp[shp$sovereignt == country_ref]
r_country <- terra::crop(r, shp_ct) # crops to the extent of boundary
r_country <- terra::extract(r_country, shp_ct, xy=T)
r_country$score_norm <- r_country$he45tn701/sum(na.omit(r_country$he45tn701))
r_country_norm_rast <- rasterFromXYZ(r_country[ , c("x","y","score_norm")])
temp_ls[[c]] <- r_country_norm_rast
rm(shp_ct, r_country, r_country_norm_rast)
}
m <- do.call(merge, temp_ls)
我想知道这是否是执行此操作的最有效/正确的方法,即没有任何循环,任何人都有任何建议?
library(raster)
library(rnaturalearth)
library(terra)
r <- raster::getData('CMIP5', var='tmin', res=10, rcp=45, model='HE', year=70)
r <- r[[1]]
shp <- rnaturalearth::ne_countries()
newcrs <- "+proj=robin +datum=WGS84"
r <- rast(r)
shp <- vect(shp)
r_pr <- terra::project(r, newcrs)
shp_pr <- terra::project(shp, newcrs)
For every country in shp_pr
, I want to normalise the underlying raster
on a scale of 0-1. This means dividing a cell by the sum of all the cells within a country boundary and repeating it for all the countries. I am doing this as follows:
country_vec <- shp$sovereignt
temp_ls <- list()
for(c in seq_along(country_vec)){
country_ref <- country_vec[c]
if(country_ref == "Antarctica") { next }
shp_ct <- shp[shp$sovereignt == country_ref]
r_country <- terra::crop(r, shp_ct) # crops to the extent of boundary
r_country <- terra::extract(r_country, shp_ct, xy=T)
r_country$score_norm <- r_country$he45tn701/sum(na.omit(r_country$he45tn701))
r_country_norm_rast <- rasterFromXYZ(r_country[ , c("x","y","score_norm")])
temp_ls[[c]] <- r_country_norm_rast
rm(shp_ct, r_country, r_country_norm_rast)
}
m <- do.call(merge, temp_ls)
I wondered if this is the most efficient/right way to do this i.e. without any for loop and anyone has any suggestions?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
有些更新且简化的示例数据(不需要投影数据)
解决方案
每个国家 /地区的单元格值归一化为0到1。
请注意,以上的数据将 您可以做:
Somewhat updated and simplified example data (there is no need for projection the data)
Solution
Note that the above normalizes the cell values for each country between 0 and 1.
To transform the data such that the values add up to 1 (by country), you can do: