具有相同的MSE,RMSE,MAE的山脊和Randomforest

发布于 2025-02-11 00:53:29 字数 962 浏览 1 评论 0原文

我已经使用给定的代码来预测值,但是,我对所有3个指标都取得了相同的分数,同时对所有其他模型都具有不同的指标。

def metrics(valid, pred):
  mse = mean_squared_error(valid, pred)
  rmse = np.sqrt(mean_squared_error(valid, pred))
  mae = mean_absolute_error(valid,pred)
  return mse, rmse, made

model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

clf = RandomForestRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Random Forest', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

I have used the given code to predict values, however, I have landed the same score, for all 3 metrics, while having different metrics for all other models.

def metrics(valid, pred):
  mse = mean_squared_error(valid, pred)
  rmse = np.sqrt(mean_squared_error(valid, pred))
  mae = mean_absolute_error(valid,pred)
  return mse, rmse, made

model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

clf = RandomForestRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Random Forest', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

余罪 2025-02-18 00:53:29

您仍在使用山脊来对Randomforest进行预测,代码应该是:

model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

clf = RandomForestRegressor().fit(X_train, y_train)
# Here predict with clf not model
y_pred = clf.predict(X_test)

You are still using the Ridge to make prediction for the RandomForest, code should be like:

model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)

df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)

clf = RandomForestRegressor().fit(X_train, y_train)
# Here predict with clf not model
y_pred = clf.predict(X_test)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文