具有相同的MSE,RMSE,MAE的山脊和Randomforest
我已经使用给定的代码来预测值,但是,我对所有3个指标都取得了相同的分数,同时对所有其他模型都具有不同的指标。
def metrics(valid, pred):
mse = mean_squared_error(valid, pred)
rmse = np.sqrt(mean_squared_error(valid, pred))
mae = mean_absolute_error(valid,pred)
return mse, rmse, made
model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)
df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)
clf = RandomForestRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)
df_models_temp = pd.DataFrame(data=[['Random Forest', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)
I have used the given code to predict values, however, I have landed the same score, for all 3 metrics, while having different metrics for all other models.
def metrics(valid, pred):
mse = mean_squared_error(valid, pred)
rmse = np.sqrt(mean_squared_error(valid, pred))
mae = mean_absolute_error(valid,pred)
return mse, rmse, made
model = Ridge().fit(X_train, y_train)
y_pred = model.predict(X_test)
df_models_temp = pd.DataFrame(data=[['Ridge', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)
clf = RandomForestRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)
df_models_temp = pd.DataFrame(data=[['Random Forest', *metrics(y_test, y_pred)]], columns=['Model Name', 'MSE', 'RMSE', 'MAE'])
df_models = df_models.append(df_models_temp, ignore_index=True)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您仍在使用山脊来对Randomforest进行预测,代码应该是:
You are still using the Ridge to make prediction for the RandomForest, code should be like: