拥抱面Tfrobertamodel详细摘要

发布于 2025-02-10 22:44:54 字数 1150 浏览 1 评论 0原文

from transformers import RobertaTokenizer, TFRobertaModel
import tensorflow as tf

tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = TFRobertaModel.from_pretrained("roberta-base")

我想要此huggingface tfrobertamodel()的详细层摘要,以便我可以在需要时可视化形状,层和自定义。但是,当我这样做时: model.summary(),它只是单层显示所有内容。我尝试挖掘它的不同属性,但无法获得详细的层摘要。可以这样做吗?

Model: "tf_roberta_model_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
roberta (TFRobertaMainLayer) multiple                  124645632 
=================================================================
Total params: 124,645,632
Trainable params: 124,645,632
Non-trainable params: 0
_________________________________________________________________

另外,还有一个相关的问题< /a>在尚未回答的拥抱面论坛中。

from transformers import RobertaTokenizer, TFRobertaModel
import tensorflow as tf

tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = TFRobertaModel.from_pretrained("roberta-base")

I want a detailed layer summary of this HuggingFace TFRobertaModel() so that I can visualize shapes, layers and customize if needed. However, when I did:
model.summary(), it just shows everything in a single layer. I tried digging into it's different attributes, but not able to get a detailed layer summary. Is it possible to do so?

Model: "tf_roberta_model_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
roberta (TFRobertaMainLayer) multiple                  124645632 
=================================================================
Total params: 124,645,632
Trainable params: 124,645,632
Non-trainable params: 0
_________________________________________________________________

Also, there is a related question in HuggingFace forum which hasn't been answered yet.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

嘴硬脾气大 2025-02-17 22:44:54

不完全是模型摘要,但是您可以打印这样的层:

from transformers import RobertaTokenizer, TFRobertaModel
import tensorflow as tf

tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = TFRobertaModel.from_pretrained("roberta-base")

def print_layers(l, model):
  for idx, s in enumerate(l.submodules):
    if s.submodules:
      print_layers(s, model)
    print(s)

TFRobertaMainLayer = model.layers[0]   
print_layers(TFRobertaMainLayer, model)

您也可以使用s. weager来获取每一层的权重。

Not exactly a model summary, but you can print the layers like this:

from transformers import RobertaTokenizer, TFRobertaModel
import tensorflow as tf

tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = TFRobertaModel.from_pretrained("roberta-base")

def print_layers(l, model):
  for idx, s in enumerate(l.submodules):
    if s.submodules:
      print_layers(s, model)
    print(s)

TFRobertaMainLayer = model.layers[0]   
print_layers(TFRobertaMainLayer, model)

You could also use s.weights to get the weights of each layer.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文