如何在numpy中使用点元素元素
有人知道一种用numpy做元素的点产品的方法吗?
import numpy as np
a = np.array([ [0,0,0],[0,0,1] ])
b = np.array([ [1,2,3],[1,3,2] ])
for i in range(0, size(a)):
c.append(np.dot(a[i],b[i]))
我想要C = [0,2] 您还将如何制作一系列整数序列乘以向量?所以: a = [1,2] b = [0,1,0] 让操作进行操作 操作(A,B) 结果应为c = [[0,1,0],[0,2,0]] 提前致谢
Does anyone know of a way to do an elementwise dot product with numpy?
import numpy as np
a = np.array([ [0,0,0],[0,0,1] ])
b = np.array([ [1,2,3],[1,3,2] ])
for i in range(0, size(a)):
c.append(np.dot(a[i],b[i]))
and I want c = [0,2]
Also how would you about making a sequence of integers scalarly multiply a vector? So:
a = [1,2]
b = [0,1,0]
Let the operation be oper
oper(a,b)
the result should be c = [[0,1,0],[0,2,0]]
Thanks in advance
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的代码实际上执行i)元素乘法ii)跨第二个维度的总和,归结为单线。示例:
您的第二个操作称为外部产品,您可以通过多种方式进行操作:
Your code actually performs i) element-wise multiplication ii) summing across the second dimension, which boils down to a one-liner. Example:
Your second operation is called an outer product, you could do it in several ways: