Apache Beam Pipeline:OutOfMemoryException在用Google DataFlow编写AVRO文件为Google Cloud存储时

发布于 2025-02-10 11:50:57 字数 2928 浏览 2 评论 0原文

我们在Apache Beam Java SDK 2.34.0中开发了一个批处理管道,并使用Google Cloud DataFlow Runner运行。我们有一个步骤来编写AVRO文件。 Avro Write引发了OutofMemory例外。 Batch试图编写大约800个AVRO文件,每个文件不超过50kb。

Error message from worker: An OutOfMemoryException occurred. Consider specifying higher memory instances in PipelineOptions.
java.util.concurrent.ExecutionException: java.lang.OutOfMemoryError: Java heap space
    java.base/java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:395)
    java.base/java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1999)
    org.apache.beam.sdk.util.MoreFutures.get(MoreFutures.java:60)
    org.apache.beam.sdk.io.WriteFiles$WriteShardsIntoTempFilesFn.finishBundle(WriteFiles.java:974)
Caused by: java.lang.OutOfMemoryError: Java heap space
    com.google.api.client.googleapis.media.MediaHttpUploader.buildContentChunk(MediaHttpUploader.java:579)
    com.google.api.client.googleapis.media.MediaHttpUploader.resumableUpload(MediaHttpUploader.java:380)
    com.google.api.client.googleapis.media.MediaHttpUploader.upload(MediaHttpUploader.java:308)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:528)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:455)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.execute(AbstractGoogleClientRequest.java:565)
    com.google.cloud.hadoop.util.AbstractGoogleAsyncWriteChannel$UploadOperation.call(AbstractGoogleAsyncWriteChannel.java:85)
    java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
    java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
    java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
    java.base/java.lang.Thread.run(Thread.java:834)

配置:
WorkerType:N2-Standard-4
NUMSHARDS:10

作者配置:

public static Write<String, Evaluation> getAvroWriter(ValueProvider<String> avroFilesPath,
            ValueProvider<Integer> shards) {
        return FileIO.<String, Evaluation>writeDynamic().withNumShards(shards)
                .by(Evaluation::getId).withDestinationCoder(StringUtf8Coder.of())
                .withNaming(Contextful.fn(fileName -> (window, pane, numShards, shardIndex, compression) -> {
                    return fileName + ".avro";
                })).via(AvroIO.sink(Evaluation.class)).to(avroFilesPath);
    }

对堆转储进行了检查,这是通过看到流/字节[]使用的内存而感到惊讶的。
heap dump dominator树
top_consumer_html

apache beam io io库中的apache beam io库中有问题吗?

We have a batch pipeline developed in Apache Beam Java SDK 2.34.0 and running with Google Cloud Dataflow runner. We have a step to write avro files. Avro write is throwing OutofMemory exception. Batch is trying to write around 800 avro files, each file not more than 50kb.

Error message from worker: An OutOfMemoryException occurred. Consider specifying higher memory instances in PipelineOptions.
java.util.concurrent.ExecutionException: java.lang.OutOfMemoryError: Java heap space
    java.base/java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:395)
    java.base/java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1999)
    org.apache.beam.sdk.util.MoreFutures.get(MoreFutures.java:60)
    org.apache.beam.sdk.io.WriteFiles$WriteShardsIntoTempFilesFn.finishBundle(WriteFiles.java:974)
Caused by: java.lang.OutOfMemoryError: Java heap space
    com.google.api.client.googleapis.media.MediaHttpUploader.buildContentChunk(MediaHttpUploader.java:579)
    com.google.api.client.googleapis.media.MediaHttpUploader.resumableUpload(MediaHttpUploader.java:380)
    com.google.api.client.googleapis.media.MediaHttpUploader.upload(MediaHttpUploader.java:308)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:528)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:455)
    com.google.api.client.googleapis.services.AbstractGoogleClientRequest.execute(AbstractGoogleClientRequest.java:565)
    com.google.cloud.hadoop.util.AbstractGoogleAsyncWriteChannel$UploadOperation.call(AbstractGoogleAsyncWriteChannel.java:85)
    java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
    java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
    java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
    java.base/java.lang.Thread.run(Thread.java:834)

Configurations:
WorkerType: n2-standard-4
numShards: 10

Writer configuration:

public static Write<String, Evaluation> getAvroWriter(ValueProvider<String> avroFilesPath,
            ValueProvider<Integer> shards) {
        return FileIO.<String, Evaluation>writeDynamic().withNumShards(shards)
                .by(Evaluation::getId).withDestinationCoder(StringUtf8Coder.of())
                .withNaming(Contextful.fn(fileName -> (window, pane, numShards, shardIndex, compression) -> {
                    return fileName + ".avro";
                })).via(AvroIO.sink(Evaluation.class)).to(avroFilesPath);
    }

Took heap dump for inspection, Surprised by seeing memory used by stream/byte[].
heap dump dominator tree
top_consumer_html

Is something wrong in Apache Beam IO Library with dataflow runner?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文