OpenAI GPT-3 API:微调微调模型?

发布于 2025-02-10 11:09:07 字数 1458 浏览 3 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

遥远的她 2025-02-17 11:09:07

更新

如官方 openai documentation

我可以继续微调已经经过微调的模型吗?

不,我们目前不支持继续进行微调过程
一旦工作完成。我们计划在不久的将来支持这一点。


如官方 OpenAI文档

如果您已经为任务进行了微调模型,现在已经有了
您想合并的其他培训数据,您可以
继续从模型进行微调。 这创建了一个模型
从所有培训数据中学到的,而无需重新培训
划痕。

为此
微调作业(例如,-m curie:ft-< org> - < date>)。其他培训
不必更改参数,但是如果您的新培训
数据比您以前的培训数据小得多,您可能会发现它
有助于减少Learning_rate_multiplier以2至4的倍。

选择哪个选项?

您正在询问两个选项:

  • 选项1:ADA +大型训练dataset.jsonl
  • 选项2:ada:ft-acme-inc-inc-2022-06-25 +附加培训-dataset.jsonl

该文档没有说出哪个选项更好,哪种选项将产生更好的结果

但是...

选择选项2

为什么?

训练微调模型时,使用的总令牌将被计费
根据我们的培训率

如果您选择选项1,则两次在培训数据集中为某些令牌付费。首先,在使用初始培训数据集进行微调时,其次在使用更大的培训数据集进行微调时(IE,较大训练dataset.jsonl = 初始训练>初始训练dataset.jsonl < /code> + <代码>附加训练dataset.jsonl)。

最好继续从微调模型中进行微调,因为您只需在其他培训数据集中为代币付费。

更多地了解微调定价计算

UPDATE

It looks like fine-tuning a fine-tuned model is not supported anymore, as stated in the official OpenAI documentation:

Can I continue fine-tuning a model that has already been fine-tuned?

No, we do not currently support continuing the fine-tuning process
once a job has finished. We plan to support this in the near future.


As stated in the official OpenAI documentation:

If you have already fine-tuned a model for your task and now have
additional training data that you would like to incorporate, you can
continue fine-tuning from the model. This creates a model that has
learned from all of the training data without having to re-train from
scratch.

To do this, pass in the fine-tuned model name when creating a new
fine-tuning job (e.g., -m curie:ft-<org>-<date>). Other training
parameters do not have to be changed, however if your new training
data is much smaller than your previous training data, you may find it
useful to reduce learning_rate_multiplier by a factor of 2 to 4.

Which option to choose?

You're asking about two options:

  • Option 1: ada + bigger-training-dataset.jsonl
  • Option 2: ada:ft-acme-inc-2022-06-25 + additional-training-dataset.jsonl

The documentation says nothing about which option is better in terms of which would yield better results.

However...

Choose Option 2

Why?

When training a fine-tuned model, the total tokens used will be billed
according to our training rates.

If you choose Option 1, you'll pay for some tokens in your training dataset twice. First when doing fine-tuning with initial training dataset, second when doing fine-tuning with bigger training dataset (i.e., bigger-training-dataset.jsonl = initial-training-dataset.jsonl + additional-training-dataset.jsonl).

It's better to continue fine-tuning from a fine-tuned model because you'll pay only for tokens in your additional training dataset.

Read more about fine-tuning pricing calculation.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文