值:sequential_40的输入0与层不兼容:预期min_ndim = 3,找到ndim = 2。收到完整的形状:(无,58)
我正在研究一门课程中的有关学生表现的数据集,并且我想根据他们上一年的分数来预测学生级别(低,中,高)。我正在为此目的使用CNN,但是当我构建和安装模型时,我会收到此错误:
ValueError: Input 0 of layer sequential_40 is incompatible with the layer: : expected min_ndim=3, found ndim=2. Full shape received: (None, 58)
这是代码:
#reshaping data
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1]))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1]))
#checking the shape after reshaping
print(X_train.shape)
print(X_test.shape)
#normalizing the pixel values
X_train=X_train/255
X_test=X_test/255
#defining model
model=Sequential()
#adding convolution layer
model.add(Conv1D(32,3, activation='relu',input_shape=(28,1)))
#adding pooling layer
model.add(MaxPool1D(pool_size=2))
#adding fully connected layer
model.add(Flatten())
model.add(Dense(100,activation='relu'))
#adding output layer
model.add(Dense(10,activation='softmax'))
#compiling the model
model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
model.summary()
#fitting the model
model.fit(X_train,y_train,epochs=10)
这是输出:
Model: "sequential_40"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_23 (Conv1D) (None, 9, 32) 128
_________________________________________________________________
max_pooling1d_19 (MaxPooling (None, 4, 32) 0
_________________________________________________________________
flatten_15 (Flatten) (None, 128) 0
_________________________________________________________________
dense_30 (Dense) (None, 100) 12900
_________________________________________________________________
dense_31 (Dense) (None, 10) 1010
=================================================================
Total params: 14,038
Trainable params: 14,038
Non-trainable params: 0
I am working on a dataset about student performance in a course, and I want to predict student level (low, mid, high) according to their previous year's marks. I'm using a CNN for this purpose, but when I build and fit the model I get this error:
ValueError: Input 0 of layer sequential_40 is incompatible with the layer: : expected min_ndim=3, found ndim=2. Full shape received: (None, 58)
This is the code:
#reshaping data
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1]))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1]))
#checking the shape after reshaping
print(X_train.shape)
print(X_test.shape)
#normalizing the pixel values
X_train=X_train/255
X_test=X_test/255
#defining model
model=Sequential()
#adding convolution layer
model.add(Conv1D(32,3, activation='relu',input_shape=(28,1)))
#adding pooling layer
model.add(MaxPool1D(pool_size=2))
#adding fully connected layer
model.add(Flatten())
model.add(Dense(100,activation='relu'))
#adding output layer
model.add(Dense(10,activation='softmax'))
#compiling the model
model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
model.summary()
#fitting the model
model.fit(X_train,y_train,epochs=10)
This is the output:
Model: "sequential_40"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_23 (Conv1D) (None, 9, 32) 128
_________________________________________________________________
max_pooling1d_19 (MaxPooling (None, 4, 32) 0
_________________________________________________________________
flatten_15 (Flatten) (None, 128) 0
_________________________________________________________________
dense_30 (Dense) (None, 100) 12900
_________________________________________________________________
dense_31 (Dense) (None, 10) 1010
=================================================================
Total params: 14,038
Trainable params: 14,038
Non-trainable params: 0
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您应该按照以下方式重塑培训数据:
通过执行此操作,您只需在输入中添加一个维度即可。然后您的输入形状就像(无,x_train.shape [1],1)。
you should reshape your training data as below:
by doing this you just add a dimension to the inputs. Then your input shape will be like (None, X_train.shape[1], 1).