评估返回多个类的返回百分比的模型
如果有一个模型返回数据中存在的不同类别数量的矢量为百分比,那么将其评估的好方法(使用图表和/或统计数据)是什么?
例如,例如,一批池塘水含有30%细菌1和70%的细菌(数据为[0.3,0.7]。我们的模型返回35%细菌1和65%细菌2(输出为[0.35,0.65])。我们评估了这个模型的准确性吗
?对于这种问题。
If there is a model that returns a vector of the amount of different classes present in the data as percentages, what would be a good way to evaluate it (with charts and/or statistics)?
Say, for example, that a batch of pond water contains 30% Bacteria1 and 70% Bacteria2 (data is [0.3, 0.7]. Our model returns 35% Bacteria1 and 65% Bacteria2 (output is [0.35, 0.65]). How would we evaluate the accuracy of this model?
Am I right in thinking that we can't use things like confusion matrices or ROC/AUC curves because this isn't a classification problem? I'm not sure if there exist other metrics like these ones for this kind of problem though.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论