Yolov1的每个网格单元中2个边界盒预测变量的理论及其作为psuedo锚盒的可能功率

发布于 2025-02-09 20:08:55 字数 234 浏览 2 评论 0 原文

在YOLO1之后,在其他迭代中使用锚固箱有一段时间的趋势(我相信原因是要加快训练并更好地检测到不同尺寸的对象)

,但是Yolov1具有有趣的机制,其中有k个界限的数量盒子预测器滑动每个网格单元,以便能够专门检测不同的缩放对象。

女士们,先生们,这是我想知道的:

在训练时间很长的情况下,与Yolov9000或依赖于锚固盒机构的Yolov9000或其同行相比,Yolov1中的这些边界预测变量可以实现更好的边界盒

After YOLO1 there was a trend of using anchor boxes for a while in other iterations as priors (I believe the reason was to both speed up the training and detect different sized objects better)

However YOLOV1 has an interesting mechanism where there are k number of bounding box predictors sliding each grid cell in order to be able to specialize in detecting different scaled objects.

Here is what I wonder, ladies and gentlemen:

Given a very long training time, can these bounding box predictors in YOLOV1 achieve better bounding boxes compared to YOLOV9000 or its counterparts that rely on anchor box mechanism

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

动听の歌 2025-02-16 20:08:55

根据我的经验,他们可以。我观察到了两种可能的优化路径,其中之一已经在最新版本的Yolov3和v5中实现了( https:/> https:/ /Github.com/ultralytics/yolov5

  1. 我观察到的是,对于Yolov3,即使在训练之前,使用K使用K表示聚类,我们可以确定许多``common box''形状。当锚屏蔽作为“特定”数据集的hador屏蔽中馈入网络时,这些数据确实提高了Yolov3网络的性能头。据我所知,这项技术是在其边界框回归代码的最新迭代中实现的。

  2. 抑制某些层。在Yolov3中,网络在三个阶段进行检测,其想法是逐步检测到较小对象的较大对象。 Yolov3(在理论上V1)可以通过某些反复试验而受益,您可以根据您在步骤1中发现的公共边界框形状来确定网络更喜欢使用网络。

In my experience, yes they can. I observed two possible optimization paths, one of which is already implemented in latest version of YOLOV3 and V5 by Ultralytics (https://github.com/ultralytics/yolov5)

  1. What I observed was that for a YOLOv3, even before training, using a K means clustering we can ascertain a number of ``common box'' shapes. These data when fed into the network as anchor maskes really improved the performance of the YOLOv3 network for "that particular" dataset since the non-max suppression routine had much better chance of succeeding at filtering out spurious detection for particular classes in each of the detection head. To the best of my knowledge, this technique was implemented in latest iterations of their bounding box regression code.

  2. Suppressing certain layers. In YOLOv3, the network performed detection in three stages with the idea of progressively detecting larger objects to smaller objects. YOLOv3 (and in theory V1) can benefit if with some trial and error, you can ascertain which detection head is your network preferring to use based on the common bounding box shapes that you found in step 1.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文