Python:通过删除nth元素调整大小数组
我有一些动态创建的数组,这些数组的长度不同,我想通过弹出每个n元素来将它们大小调整到相同的5000元素长度。
这是我到目前为止得到的:
import numpy as np
random_array = np.random.rand(26975,3)
n_to_pop = int(len(random_array) / 5000)
print(n)
如果我使用n(5)进行倒数采样,我可以获得5395个元素
,我可以做5395 /5000 = 1.07899,但是我不知道该如何计算我应该弹出元素以删除元素的频率最后0.07899个元素。
如果我可以在5000-5050的长度内获得也是可以接受的,那么可以用简单的简单来牺牲其余部分
可能只是一个简单的数学问题,但我似乎在任何地方都找不到答案。
任何帮助都非常感谢。
最好的问候
马丁
I have some dynamically created arrays that have varying lengths and I would like to resize them to the same 5000 element length by popping every n element.
Here is what I got so far:
import numpy as np
random_array = np.random.rand(26975,3)
n_to_pop = int(len(random_array) / 5000)
print(n)
If I do the downsampling with n (5) I get 5395 elements
I can do 5395 / 5000 = 1.07899, but I don't know how to calculate how often I should pop a element to remove the last 0.07899 elements.
If I can get within 5000-5050 length that would also be acceptable, then the remainder can be sacrificed with a simple .resize
This is probably just a simple math question, but I couldn't seem to find an answer anywhere.
Any help is much appreciated.
Best regards
Martin
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您可以使用
np.linspace
之类的东西使您的解决方案尽可能统一:您并不总是想丢弃统一数量的元素。考虑将5003元素数组减少到5000个元素与50003元素数组的情况。诀窍是创建一组元素来保留或删除索引中尽可能线性的,这正是
np.linspace
所做的。你也可以做类似的事情
You can use something like
np.linspace
to make your solution as uniform as possible:You don't always want to drop a uniform number of elements. Consider the case of reducing a 5003 element array to 5000 elements vs a 50003 element array. The trick is to create a set of elements to keep or drop that's as linear as possible in the index, which is exactly what
np.linspace
does.You could also do something like
您可以使用步骤解决方案使用
np.random.choice
或np.random。置换
as:如果几乎均匀删除行,一种方法是:
You can use Step solution using
np.random.choice
ornp.random.permutation
as:In case of near uniformly remove the rows, one way is: