显示NOAA高程数据

发布于 2025-02-09 09:55:06 字数 1010 浏览 1 评论 0原文

我找到了一个示例,并且想复制它:

import numpy as np
import matplotlib.pyplot as plt
from netCDF4 import Dataset

data = Dataset("Path/ETOPO1_Bed_g_gmt4.grd",'r')
print(data.variables.keys())

lon_range = data.variables['x_range'][:]
lat_range = data.variables['y_range'][:]
topo_range = data.variables['z_range'][:]
spacing = data.variables['spacing'][:]
dimension = data.variables['dimension'][:]
z = data.variables['z'][:]
lon_num = dimension[0]
lat_num = dimension[1]

lon = np.linspace(lon_range[0],lon_range[1],dimension[0])
lat = np.linspace(lat_range[0],lat_range[1],dimension[1])

topo = np.reshape(z, (lat_num, lon_num))


plt.imshow(topo, vmax=0)

但是,我不知道x_range来自哪里,因为当我打印时:

    print(data.variables.keys())
dict_keys(['x', 'y', 'z'])

如何解决这个问题?

来源: /eTopo1-区域隔离到派森/23924#23924

I have found the example and would like to copy it:

import numpy as np
import matplotlib.pyplot as plt
from netCDF4 import Dataset

data = Dataset("Path/ETOPO1_Bed_g_gmt4.grd",'r')
print(data.variables.keys())

lon_range = data.variables['x_range'][:]
lat_range = data.variables['y_range'][:]
topo_range = data.variables['z_range'][:]
spacing = data.variables['spacing'][:]
dimension = data.variables['dimension'][:]
z = data.variables['z'][:]
lon_num = dimension[0]
lat_num = dimension[1]

lon = np.linspace(lon_range[0],lon_range[1],dimension[0])
lat = np.linspace(lat_range[0],lat_range[1],dimension[1])

topo = np.reshape(z, (lat_num, lon_num))


plt.imshow(topo, vmax=0)

However, I don't know where x_range comes from because when I print:

    print(data.variables.keys())
dict_keys(['x', 'y', 'z'])

How can I get around this problem?

the source: https://earthscience.stackexchange.com/questions/23904/etopo1-region-selection-in-python/23924#23924

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

菩提树下叶撕阳。 2025-02-16 09:55:08

您可以使用 xarray 为此?这似乎是一个很棒的用例:)

没有看到您的数据,很难确定这是否可以解决,但这应该很简单:

ds = xr.open_dataset("Path/ETOPO1_Bed_g_gmt4.grd", engine='netcdf4')
print(ds)
ds.z.plot(vmax=0)

can you use xarray for this? it seems like a great use case :)

Without seeing your data it's hard to know for sure if this will work out of the box, but it should be something as simple as this:

ds = xr.open_dataset("Path/ETOPO1_Bed_g_gmt4.grd", engine='netcdf4')
print(ds)
ds.z.plot(vmax=0)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文