使用MLFlow和Sklearn记录模型时多个伪影路径
我正在使用MLFlow来记录logistic回归的参数和工件,但是当我尝试记录模型时,我可以在mlflow UI中看到所有文件时,我会看到两个文件夹:一个文件夹:一个名为“模型”,另一个名为命名的文件夹“ logger”(我设置的那个)。
model = LogisticRegression()
mlflow.set_tracking_uri('file:///artifacts')
mlflow.set_experiment('test')
mlflow.autolog()
with mlflow.start_run(run_name=run_name) as run:
model.train(X_train, y_train)
mlflow.sklearn.log_model(model, 'logreg')
不确定我是否缺少某些东西或是否有配置。
希望有人可以帮助我!
I'm using mlflow to log parameters and artifacts of a Logistic Regression, but when I try to log the model so I can see all the files in the Mlflow UI, I see two folders: one named 'model' and the other one named 'logger' (the one I set).
model = LogisticRegression()
mlflow.set_tracking_uri('file:///artifacts')
mlflow.set_experiment('test')
mlflow.autolog()
with mlflow.start_run(run_name=run_name) as run:
model.train(X_train, y_train)
mlflow.sklearn.log_model(model, 'logreg')
Not sure if I'm missing something or if there's a configuration for that.
I hope someone out there can help me!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您已经设置了
自动
,并且还明确记录了模型。删除一个,然后尝试。You have set
autolog
and you are also logging the model explicitly. Remove one and then try.