面对识别但无法获得用户的信息此类用户名称
我遇到了一个错误的信息,该系统已识别谁 的用户名称
系统可以识别面部,但无法获取用户信息,例如我尝试更改以下代码
all_matches = face_recognition.compare_faces(known_face_encodings, current_face_encoding)
if True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
:我曾经使用numpy将数组嵌套在数组中 这是代码
all_matches = np.array(face_recognition.compare_faces(known_face_encodings, current_face_encoding))
if all_matches.any()==True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
,但获得了typeerro attributeError:'numpy.ndarray'对象没有属性'索引
这是识别python文件,
#impoting packages
import cv2
import face_recognition
import json
import numpy as np
#capture the video from default camera
webcam_video_stream = cv2.VideoCapture(0,cv2.CAP_DSHOW)
all_face_locations = []
all_face_encodings = []
all_face_names = []
known_face_names = []
known_face_image=[]
known_face_encodings =[]
with open('individuals.json') as json_file:
alldata=json.loads(json_file.read());
for person in alldata:
known_face_names.append(person['name'])
newKnownImages =known_face_image.append(face_recognition.load_image_file('images/samples/'+person['image']))
known_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file('images/samples/'+person['image'])))
print(known_face_encodings)
while True:
#get the current frame from the video stream as an image
ret,current_frame = webcam_video_stream.read()
#resize the current frame to 1/4 size to proces faster
current_frame_small = cv2.resize(current_frame,(0,0),fx=0.25,fy=0.25)
#detect all faces in the image
#arguments are image,no_of_times_to_upsample, model
all_face_locations =
face_recognition.face_locations(current_frame_small,number_of_times_to_upsample=1,model='hog')
#detect face encodings for all the faces detected
all_face_encodings = face_recognition.face_encodings(current_frame_small,all_face_locations)
#looping through the face locations and the face embeddings
for current_face_location,current_face_encoding in zip(all_face_locations,all_face_encodings):
#splitting the tuple to get the four position values of current face
top_pos,right_pos,bottom_pos,left_pos = current_face_location
#change the position maginitude to fit the actual size video frame
top_pos = top_pos*4
right_pos = right_pos*4
bottom_pos = bottom_pos*4
left_pos = left_pos*4
#find all the matches and get the list of matches
all_matches =face_recognition.compare_faces(known_face_encodings, current_face_encoding)
#string to hold the label
name_of_person = 'Unknown face'
#check if the all_matches have at least one item
#if yes, get the index number of face that is located in the first index of all_matches
#get the name corresponding to the index number and save it in name_of_person
if True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
#draw rectangle around the face
cv2.rectangle(current_frame,(left_pos,top_pos),(right_pos,bottom_pos),(255,0,0),2)
#display the name as text in the image
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(current_frame, name_of_person, (left_pos,bottom_pos), font, 0.5, (255,255,255),1)
#display the video
cv2.imshow("Webcam Video",current_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#release the stream and cam
#close all opencv windows open
webcam_video_stream.release()
cv2.destroyAllWindows()
这是我的json文件代码
[ {
"name": "me",
"id": "c119015",
"username": "me",
"image": "me.jpeg"
},
{
"name": "bilgates",
"id": "c10996",
"username": "billgates",
"image": "bilgates.jpg"
},
{
"name": "Elon_Musk",
"id": "c1091",
"username": "Elon_Musk",
"image": "Elon_Musk.jpg"
}
] 我可以使用async-await获取每个用户的信息吗
I got an error getting user's information who the system recognized
the system can recognize the face but cannot get user information such as the name of the user
I tried to change the original code of this:
all_matches = face_recognition.compare_faces(known_face_encodings, current_face_encoding)
if True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
I used to nest array inside array using Numpy
this is the code
all_matches = np.array(face_recognition.compare_faces(known_face_encodings, current_face_encoding))
if all_matches.any()==True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
but got typeErro AttributeError: 'numpy.ndarray' object has no attribute 'index
this is the recognition python file
#impoting packages
import cv2
import face_recognition
import json
import numpy as np
#capture the video from default camera
webcam_video_stream = cv2.VideoCapture(0,cv2.CAP_DSHOW)
all_face_locations = []
all_face_encodings = []
all_face_names = []
known_face_names = []
known_face_image=[]
known_face_encodings =[]
with open('individuals.json') as json_file:
alldata=json.loads(json_file.read());
for person in alldata:
known_face_names.append(person['name'])
newKnownImages =known_face_image.append(face_recognition.load_image_file('images/samples/'+person['image']))
known_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file('images/samples/'+person['image'])))
print(known_face_encodings)
while True:
#get the current frame from the video stream as an image
ret,current_frame = webcam_video_stream.read()
#resize the current frame to 1/4 size to proces faster
current_frame_small = cv2.resize(current_frame,(0,0),fx=0.25,fy=0.25)
#detect all faces in the image
#arguments are image,no_of_times_to_upsample, model
all_face_locations =
face_recognition.face_locations(current_frame_small,number_of_times_to_upsample=1,model='hog')
#detect face encodings for all the faces detected
all_face_encodings = face_recognition.face_encodings(current_frame_small,all_face_locations)
#looping through the face locations and the face embeddings
for current_face_location,current_face_encoding in zip(all_face_locations,all_face_encodings):
#splitting the tuple to get the four position values of current face
top_pos,right_pos,bottom_pos,left_pos = current_face_location
#change the position maginitude to fit the actual size video frame
top_pos = top_pos*4
right_pos = right_pos*4
bottom_pos = bottom_pos*4
left_pos = left_pos*4
#find all the matches and get the list of matches
all_matches =face_recognition.compare_faces(known_face_encodings, current_face_encoding)
#string to hold the label
name_of_person = 'Unknown face'
#check if the all_matches have at least one item
#if yes, get the index number of face that is located in the first index of all_matches
#get the name corresponding to the index number and save it in name_of_person
if True in all_matches:
first_match_index=all_matches.index[True]
name_of_person = known_face_names[first_match_index]
#draw rectangle around the face
cv2.rectangle(current_frame,(left_pos,top_pos),(right_pos,bottom_pos),(255,0,0),2)
#display the name as text in the image
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(current_frame, name_of_person, (left_pos,bottom_pos), font, 0.5, (255,255,255),1)
#display the video
cv2.imshow("Webcam Video",current_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#release the stream and cam
#close all opencv windows open
webcam_video_stream.release()
cv2.destroyAllWindows()
this is my JSON file code
[
{
"name": "me",
"id": "c119015",
"username": "me",
"image": "me.jpeg"
},
{
"name": "bilgates",
"id": "c10996",
"username": "billgates",
"image": "bilgates.jpg"
},
{
"name": "Elon_Musk",
"id": "c1091",
"username": "Elon_Musk",
"image": "Elon_Musk.jpg"
}
]
can I use async-await to get each user's information
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论